Bayes Law

$$
\mu(E \mid F)=\frac{\mu(F \mid E) \mu(E)}{\mu(F)}
$$

"likelihood" times "prior"

Ratio Form

$$
\frac{\mu(E \mid F)}{\mu(-E \mid F)}=\frac{\mu(F \mid E) \mu(E)}{\mu(F \mid-E) \mu(-E)}
$$

(Kahneman and Tversky)
Steve is very shy and withdrawn, invariably helpful but with very little interest in people or in the world of reality. A meek and tidy soul, he has a need for order and structure, and a passion for detail. ($F=$ Steve)
Is Steve more likely to be a librarian or a farmer? ($E=$ farmer)
Important bit of information: there are about twenty times as many farmers as librarians

Sample Selection Bias and Why We Do RCTs

Using Bayes Law

Pr (shot|return) what we see
Pr (return|shot) what we want
Getting these two confused is a common source of error

Drug Testing

A drug test has a 5% chance of error. A group of parolees is given the test. Of the parolees, 60% are drug users. If the test is positive how likely is it the parolee is using drugs?

E=using drugs
$\mathrm{F}=$ positive test

$$
\begin{aligned}
& \mu(E \mid F)=\frac{\mu(F \mid E) \mu(E)}{\mu(F)} \\
& =\frac{.95 \times .6}{.95 \times .6+.05 \times 4}=.97
\end{aligned}
$$

Airline Pilots

Now the test is given to a group of airline pilots of whom only 2% are drug users. If the test comes out positive how likely is it the pilot is using drugs?

$$
\mu(E \mid F)=\frac{.95 \times .02}{.95 \times .02+.05 \times .98}=.28
$$

The Ann Landers Problem

Ann Landers says that all heroin users once used marijuana, so that if you use marijuana, you will surely end up using heroin
$\mathrm{E}=$ heroin use
$\mathrm{F}=$ marijuana use
$\mu(E \mid F)=\frac{\mu(F \mid E) \mu(E)}{\mu(F)}=\frac{\mu(E)}{\mu(F)}$
so that if there are 100 times as many marijuana users as heroin users, using marijuana means only a 1% chance of using heroin

Independence

We say two events E, F are independent if
$\mu(E \cap F)=\mu(E) \mu(F)$

What is the conditional probability when events are independent?
$\mu(E \mid F)=\mu(E \cap F) / \mu(F)=(\mu(E) \mu(F)) / \mu(F)=\mu(E)$

Nature's Moves

Add an additional player "Nature" with random moves

Example: Chain Store in declining industry

Decision Analysis

To drill for oil or not to drill for oil? Cost $\$ 100,000$.

How much will you pay for a geological survey before drilling?

Value of Oil:
\$0 (dry) with probability 50\%
$\$ 300,000$ with probability 50%

The survey has a 10% error rate
no risk aversion

Decision Tree

Where to Put Nature's Move

As late as possible to make it easier to do backwards induction

Filling in the ?'s

$$
p r(d r y \mid+)=\frac{p r(+\mid d r y) p r(d r y)}{p r(+)}=\frac{.1 \times .5}{.5}=.1
$$

Compute Expected Utilities

Optimize

Expected Utility Again

drill or survey; survey if $85-x>50$ or $x<35$

First Rule of Decision Analysis

- Do not pay for information that will not change your decision
- widely violated during Covid vaccination pauses

Concepts

- Conditional probability
- Bayes law
- independence
- value of information
- first rule of decision analysis

Skill

given information about conditional probabilities do a cost/benefit analysis

