Expected Utility Theory

Let Ω be a probability space

A gamble is a random variable where the quantity represents "money" or "consumption"

Suppose that x_{1} and x_{2} are "gambles"
Which gamble is preferred?
Generally: gains are less important than losses

Von Neumann-Morgenstern Preferences

Gambles are compared using a numeric valued utility function $u(x)$ is the utility from consuming x
x_{1} is at least as good (strictly better than) as x_{2}
$E u\left(x_{1}\right) \geq(>) E u\left(x_{2}\right)$
risk neutrality: $u(x)=x$

Example

$$
u(x)=10-10 / x
$$

Money versus Utility

Money payoffs for player 1

	H	T
U	5	1
D	4	2

Utility payoffs for player 1

	H	T
U	8	0
D	7.5	5

Optimal Choices

If H and T have equal probability is it better to choose U or D ?

	Expected money	Expected utility
U	3	4
D	3	6.25

Choose D

Risk Aversion

Would you rather get a gamble x or get the expected value of the gamble Ex for sure? Suppose that the gamble is x^{L} with probability p and x^{H} with probability $1-p$

Concavity

utility

What happens as p changes?

Risk Loving

Knee Breakers

risk loving because the loss function is truncated

- you have 1000 and owe a gambling debt of 2000
- double or nothing is a good bet: lose and you still get your knees broken; win and you escape
other applications:
- sporting contests: "the Hail Mary pass"
- the game of banks and regulators

Applications

- Investment: risky portfolio? Stocks or bonds?
- Insurance: auto insurance company charges a premium
- diversification
- but hard risk difficult to insure
- example: industrial decline, everyone should pay, but how to get them to do it?
- some economists do not really understand competition and see market failure everywhere
- some "libertarian" non-economists see market failure nowhere
- in fact market failure is a problem with insurance for large risks

Risk premium

y a random amount with $E y=0, E y^{2}=1$
relative risk premium ρ
$u(x-\rho x)=E u(x+\sigma y x)$
$x-\rho x$ is the certainty equivalent of the gamble
$u(x)-\rho x u^{\prime}(x)=E u(x)+\sigma x u^{\prime}(x) y+(1 / 2) \sigma^{2} x^{2} u^{\prime \prime}(x) y^{2}$
$=u(x)+(1 / 2) \sigma^{2} x^{2} u^{\prime \prime}(x)$
$\rho=-\frac{u^{\prime \prime}(x) x}{u^{\prime}(x)}$ coefficient of relative risk aversion

Constant Relative Risk Aversion

$u(x)=\frac{x^{1-\rho}}{1-\rho}$ also known as "constant elasticity of substitution" or CES
$\rho \geq 0$
$-\frac{u^{\prime \prime}(x) x}{u^{\prime}(x)}=\frac{\rho x^{-\rho-1} x}{x^{-\rho}}=\rho$
$\rho=0$ linear, risk neutral
$\rho=1 u(x)=\log (x)$
useful for empirical work and growth theory, perhaps about two?

Example

Logarithmic utility, good approximation in many circumstances
$u(x)=\log x$
endowment: $x_{0}=100$
two investments of 10
stock: 75% gain of $20,25 \%$ no gain
bond: certain gain of 12

	utility	
endowment	$\log 100$	4.605
stock	$.75 \log 110+.25 \log 90$	4.650
bond	$\log 102$	4.625

What if?

Endowment: $x_{0}=1000$
two investments of 100
stock: 75% gain of $200,25 \%$ no gain
bond: certain gain of 120

Concepts

- expected utility
- risk aversion, risk loving, risk neutral
- insurance, market failure
- concavity and convexity
- risk premium, certainty equivalent
- coefficient of relative risk aversion

Skill

given different investments with different risky returns and a constant relative risk aversion utility function
find which is the superior investment
determine how the answer depends upon risk aversion

