## **Expected Utility Theory**

Let  $\Omega$  be a probability space

A gamble is a random variable where the quantity represents "money" or "consumption"

Suppose that  $x_1$  and  $x_2$  are "gambles"

Which gamble is preferred?

Generally: gains are less important than losses

## Von Neumann-Morgenstern Preferences

Gambles are compared using a numeric valued utility function u(x) is the utility from consuming x

 $x_1$  is at least as good (strictly better than) as  $x_2$ 

$$Eu(x_1) \ge (>) Eu(x_2)$$

risk neutrality: u(x) = x

# **Example**

$$u(x) = 10 - 10/x$$



## Money versus Utility

Money payoffs for player 1

|   | H |   |
|---|---|---|
| U | 5 | 1 |
| D | 4 | 2 |

Utility payoffs for player 1

|   | H   | To the second |
|---|-----|---------------|
| U | 8   | 0             |
| D | 7.5 | 5             |

# **Optimal Choices**

If H and T have equal probability is it better to choose U or D?

|   | Expected money | Expected utility |
|---|----------------|------------------|
| U | 3              | 4                |
| D | 3              | 6.25             |

Choose D

### **Risk Aversion**

Would you rather get a gamble x or get the expected value of the gamble Ex for sure? Suppose that the gamble is  $x^L$  with probability p and  $x^H$  with probability 1-p

# Concavity





What happens as p changes?

# **Risk Loving**



#### **Knee Breakers**

risk loving because the loss function is truncated

- you have 1000 and owe a gambling debt of 2000
- double or nothing is a good bet: lose and you still get your knees broken; win and you escape

#### other applications:

- sporting contests: "the Hail Mary pass"
- the game of banks and regulators

## **Applications**

- Investment: risky portfolio? Stocks or bonds?
- Insurance: auto insurance company charges a premium
  - diversification
  - but hard risk difficult to insure
  - example: industrial decline, everyone should pay, but how to get them to do it?
  - some economists do not really understand competition and see market failure everywhere
  - some "libertarian" non-economists see market failure nowhere
  - in fact market failure is a problem with insurance for large risks

## Risk premium

y a random amount with  $Ey = 0, Ey^2 = 1$ 

relative risk premium  $\rho$ 

$$u(x - \rho x) = Eu(x + \sigma yx)$$

 $x - \rho x$  is the *certainty equivalent* of the gamble

$$u(x) - \rho x u'(x) = Eu(x) + \sigma x u'(x) y + (1/2)\sigma^2 x^2 u''(x) y^2$$

$$= u(x) + (1/2)\sigma^2 x^2 u''(x)$$

$$\rho = -\frac{u"(x)x}{u'(x)} \ \ \text{coefficient of relative risk aversion}$$

### Constant Relative Risk Aversion

$$u(x) = \frac{x^{1-\rho}}{1-\rho}$$
 also known as "constant elasticity of substitution" or CES

$$\rho \ge 0$$

$$-\frac{u''(x)x}{u'(x)} = \frac{\rho x^{-\rho - 1}x}{x^{-\rho}} = \rho$$

 $\rho = 0$  linear, risk neutral

$$\rho = 1 \ u(x) = \log(x)$$

useful for empirical work and growth theory, perhaps about two?

## **Example**

Logarithmic utility, good approximation in many circumstances

$$u(x) = \log x$$

endowment:  $x_0 = 100$ 

two investments of 10

stock: 75% gain of 20, 25% no gain

bond: certain gain of 12

|           | utility                      |       |
|-----------|------------------------------|-------|
| endowment | $\log 100$                   | 4.605 |
| stock     | $.75 \log 110 + .25 \log 90$ | 4.650 |
| bond      | $\log 102$                   | 4.625 |

### What if?

Endowment:  $x_0 = 1000$ 

two investments of 100

stock: 75% gain of 200, 25% no gain

bond: certain gain of 120

### **Concepts**

- expected utility
- risk aversion, risk loving, risk neutral
- insurance, market failure
- concavity and convexity
- risk premium, certainty equivalent
- coefficient of relative risk aversion

### Skill

given different investments with different risky returns and a constant relative risk aversion utility function

find which is the superior investment

determine how the answer depends upon risk aversion