Time, Interest, and Discounting the Future

interest at an annual rate of *r* paid annually:

\$1 in the bank, and in one year collect \$1+r

discount factor:

to have \$1 in the bank in one year time, must put

 $\delta = \frac{1}{1+r}$ in the bank today

A Useful Approximation

 $\frac{1}{1+r}\approx 1-r \text{ if } r <<1$

r	$\frac{1}{1+r}$	1 - r
1%	.9901	.9900
10%	.9091	.9000
50%	.6667	.5000

Present Value

1 dollar at the beginning of every year for τ years is worth what right now?

what is $z = 1 + \delta + \delta^2 + \ldots + \delta^{\tau-1}$? $\delta z = z - 1 + \delta^{\tau}$ $(1 - \delta)z = 1 - \delta^{\tau}$

$$1 + \delta + \delta^2 + \ldots + \delta^{\tau - 1} = z = \frac{1 - \delta^{\tau}}{1 - \delta}$$

Mortgage Interest

You buy a house for \$250,000. You make a 20% down payment, and get a 30 year fixed rate mortgage at 8% annual interest. How much are your monthly payments.

- suppose that monthly interest is 8%/12=0.67%
- so $\delta = \frac{1}{1 + .0067} \approx .9933$
- mortgage is for \$200,000
- number of payments $\tau = 360$

Find the Monthly Payment

let *p* be the monthly payment then

$$200000 = (\delta + \delta^2 + \dots + \delta^\tau)p = \delta \frac{1 - \delta^t}{1 - \delta}p$$

or

$$p = 200000 \frac{1}{\delta} \frac{1 - \delta}{1 - \delta^{\tau}}$$
$$\approx 200000 \frac{1}{.9933} \frac{.0066555}{.9111} \approx 1471$$

Capital and Investment

Present value is an essential tool for evaluating investments Investment creates capital

there are several types of capital

- financial capital (for example, the bank account)
- physical capital (a house, machine, factory)
- human capital (what you get by investing in education

Next: Repeated Games

The Repeated Prisoner's Dilemma

	Player 2					
Player 1	don't confess	confess				
don't confess	32,32	28,35				
confess	35,28	30,30				

- This is a simultaneous move game with a unique Nash equilibrium, and a unique strictly dominant strategy solution at 30, 30.
- The unique non-cooperative solution is Pareto dominated by 32, 32
- with repeated play, incentives are changed by the possibility of punishments and rewards in the future.

More Than One Equilibrium

a basic feature of repeated games: regardless of the discount factors, the repeated static equilibrium is a subgame perfect equilibrium of the repeated game

Grim Trigger Strategies

the grim trigger strategy in the repeated game is

- cooperate in the first period
- cooperate in subsequent periods as long as all players have cooperated in every previous period
- cheat in any period in which some player has cheated in any previous period

What to Do?

payoff to cheating

 $(35 + 30\delta + 30\delta^2 \dots) = 5 + 30/(1 - \delta)$

- payoff to cooperating $32/(1-\delta)$
- optimal to cooperate if

$$32 \geq 35 - 5\delta$$
 or

- $\delta \geq 3\,/\,5$
- if $\delta \geq 3/5$ both players playing the grim strategy is a subgame perfect equilibrium
- why is this subgame perfect?

Incentive Compatibility

The condition that cooperation is better than cheating

 $32 \ge 35 - 5\delta$

is called an incentive constraint

if it is satisfied then cooperation is said to be incentive compatible

Pedro Dal Bo's Experiment

PD1			FR.C	PD2	77. ZZ Z
NO.K		Blue Play	/er	Blue Play	yer
		С	D	С	D
Red	С	65 , 65	10 , 100	75 , 75	10 , 100
Player	D	100 , 10	35 , 35	100 , 10	45 , 45

All payoffs in the game were in points. At the end of each session, the points earned by each subject were converted into dollars at the exchange rate 200 points=\$1 and paid privately in cash. In addition, subjects were paid a 5 dollar show up fee

Rotating matching

Repetition

Infinite horizon

 $\delta = 0.1/2.3/4$ expected length 1.2.4 (how did he do this??) Finite horizon

H = 1, 2, 4

subjects played all infinite or all finite done in both orders – increasing length and decreasing length

Theory

δ	PD1	PD2
0	DD	DD
1/2	DD, DC, CD	DD, CC
3/4	All	All

Results on Cooperation

Table 5: Percentage of cooperation by match and treatment $\!\!\!*$

		Match									
		1	2	3	4	5	6	7	8	9	10
	$\delta = 0$	26.26	18.18	10.61	11.62	12.63	12.63	5.56	5.26	5.26	5
Dice	$\delta = \frac{1}{2}$	28.36	27.12	34.58	35.53	21.60	19.08	29.84	35.96	28.16	50
	$\delta = \frac{3}{4}$	40.44	28.57	27.78	32.92	46.51	33.09	44.05	53.51	42.26	45.83
	H = 1	26.56	18.23	16.67	17.19	11.98	8.02	6.79	10.49	6.14	6.67
Finite	H=2	19.79	15.89	14.84	9.64	11.46	10.80	12.04	10.19	6.58	6.67
	H = 4	31.64	30.34	30.47	25.52	25.13	23.77	16.36	19.75	14.91	20.83

*All rounds.

Focus on matches 4-10

Table 6: Percentage of cooperation by round and treatment *

							Ro	und					
		1	2	3	4	5	6	7	8	9	10	11	12
	$\delta = 0$	9.17											
Dice	$\delta = \frac{1}{2}$	30.93	26.10	19.87	12.50	12.96							
	$\delta = \tfrac{3}{4}$	46.20	40.76	38.76	34.58	33.04	27.27	24.75	26.28	29.17	26.04	32.29	31.25
	H = 1	10.34											
Finite	H=2	13.31	6.90										
	H = 4	34.58	21.55	18.97	10.63								
*Match	Matchas four through ton												

*Matches four through ten.

Joint Outcomes

Table 7: Distribution of outcomes by stage game and treatment $\!\!\!*$

	$\delta =$	$\delta = 0$		$=\frac{1}{2}$	$\delta = \frac{3}{4}$				
	PD1	PD2	PD1	PD2	PD1	PD2			
CC	2.98	0.27	3.17	18.83	20.68	25.64			
CD & DC	20.83	13.98	28.57	25.50	30.34	26.03			
DD	76.19	85.75	68.25	55.67	48.98	48.33			
*Matches four through ten, and all rounds.									

Concepts

- interest rate, discount factor
- present value
- investment, capital
- financial capital, physical capital, human capital
- grim trigger strategy
- incentive compatibility

Skill

given investments with different income streams

find and compare the present values

determine when the incentive constraints are satisfied by grim-trigger strategies