John Nash

Nobel Prize in Economics in 1994 "for [his] pioneering analysis of equilibria in the theory of non-cooperative games"

Coordination Games

Airplane hijacking game

2224220	attack	wait
attack	2*,2	0,0
wait	0,0	1*,1

no strategies are dominated: beliefs matter example of a *coordination game*

Nash Equilibrium

each player plays optimally and correctly guesses what the other player will do

step 1: best response what is best to do given beliefs

step 2: equilibrium of beliefs

Star Star	attack	wait
attack	2*,2*	0,0
wait	0,0	1*,1*

Two Nash equilibria: which one? Pareto ranked, one is "obvious"

Dominant Strategy versus Nash

Players playing dominant strategies is an example of Nash equilibrium here beliefs do not matter

	Player 2	
Player 1	don't confess	confess
don't confess	32,32	28,35*
confess	35*,28	30*,30*

Other Coordination Games

Drive on the left or on the right?

SACK SKOK	left	right
left	1*,1*	0,0
right	0,0	1*,1*

Battle of the sexes

	opera	match
opera	2*,1*	0,0
match	0,0	1*,2*

Why Nash Equilibrium?

- reasoning versus learning
- at a Nash equilibrium, there is nothing further to learn
- the rush hour traffic game

Learning and Nash Equilibrium

- economists think people are pretty smart
- they are pretty good at learning
- algorithms take ages to converge
- people are quick

Pre-911 Airplane Hijacking Game

1935-293	attack	wait
attack	1*,1*	0,0
wait	0,0	2*,2*

Versus post 911 game

	attack	wait
attack	2*,2*	0,0
wait	0,0	1*,1*

Case Study: 911

1990s about 18 aircraft hijackings a year most ended peacefully and the passengers never attacked after 911 this dropped to just a few aircraft hijacking a year most ended when the passengers attacked the hijackers

how long did it take to switch from one equilibrium to the other? one hour and eleven minutes

Duopoly Again

profits

$$\pi_i = [16 - (Q_i + Q_{-i})]Q_i$$

note use of -i to mean "the other player"

the best response or reaction function for player i maximizes their profit with respect to their own output Q_i based on their belief about their opponent output Q_{-i}

The Best Response

to do this take the partial derivative with respect to Q_i , set it equal to zero and solve for Q_i

$$\partial \pi_i / \partial Q_i = 16 - 2Q_i - Q_{-i} = 0$$

solution is the best response or reaction function

$$Q_i = 8 - \frac{Q_{-i}}{2}$$

equilibrium is where both player's beliefs are correct

that is to say: both are playing a best response at the same time

Best Response Graph

Equilibrium

Solve

$$Q_2 = 8 - Q_1/2, Q_1 = 8 - Q_2/2$$

solution

$$Q_1 = Q_2 = 16/3 = 5\,1/3$$

less than monopoly (8) but more than half monopoly industry output

$$Q = Q_1 + Q_2 = 32/3 = 10\,2/3$$

more than monopoly but 2/3 of competitive (16)

Equilibrium : Graph

The Cournot Model

- an oligopoly market with n identical firms facing constant marginal cost c
- demand given by p = a bQ

so that the competitive solution is (a - c)/b units of output and the monopoly solution is (a - c)/2b units of output

Nash (Cournot) Equilibrium

Profits of a firm

$$\pi_i = (a - c - b \sum_j Q_j) Q_i$$

Best response of a firm

$$\partial \pi_i / \partial Q_i = (a-c) - b \sum_j Q_j - b Q_i = 0$$

NOW and only NOW we use the equilibrium condition symmetry: $Q_i = (1/n) Q \label{eq:symmetry}$

plug in and solve

$$(a-c) - bQ - (b/n)Q = 0$$
$$Q = \frac{n}{n+1} \frac{a-c}{b}$$

Characteristics of the Equilibrium

$$Q = \frac{n}{n+1} \frac{a-c}{b}$$

when n = 1 this gives the usual monopoly solution as $n \to \infty$ this approaches the competitive solution

Concepts

- coordination game
- Nash equilibrium
- best response, reaction function
- oligopoly
- Cournot equilibrium

Skill

Given the description of a game find the payoff matrix game find the Nash equilibrium Given information about consumer utility and the costs of firms find the Cournot equilibrium