When Are Agents Negligible?

By Davip K. LEVINE AND WOLFGANG PESENDORFER *

We examine the following paradox: in a dvnamic setting, equilibria can be rad-
ically different in a model with a finite number of agents than in a model with a
continuum of agents. We present a simple strategic setting in which this paradox
is a general phenomenon. However, the paradox disappears when there is noisy
observation of the plavers’ actions, and the aggregate level of noise does not
disappear too rapidly as the number of players increases. We give several eco-
nomic examples in which this paradox has recently received attention: durable-
goods monopoly, corporate takeovers, and time consistency of optimal

government policy. (JEL C72, C73)

This paper examines a seemingly narrow
technical puzzle: in a dynamic setting, equili-
bria can be radically different in a model with
a finite number of agents than in a model with
a continuum of agents. While seemingly nar-
row, this issue has broad economic impor-
tance: the continuum-of-agents model is
widely used either explicitly or implicitly in
applied economic situations ranging from
competitive markets to public finance and po-
litical economy. The rationale for using the
continuum-of-agents model is that it is a useful
idealization of a situation with a large finite
number of agents, but if equilibria in the con-
tinuum model are radically different from
equilibria in the model with a finite number of
agents, then this idealization makes little
sense.

A good example in which this issue has
arisen is the study of the Coase Conjecture for
a durable-goods monopoly. Work by Drew
Fudenberg et al. (1985), and Faruk Gul et al.
(1986) showed that when a continuum of buy-
ers is known to value a good more than the
seller does, and when the trading period is
short, to a good approximation, the monopolist
sells the good immediately at her reservation
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price. On the other hand, Mark Bagnoli et al.
(1989) observe that, when faced with a finite
number of buyers, the seller can perfectly
price-discriminate regardless of the length of
the trading period.

This issue also arises in the discussion of
the free-rider problem in corporate takeovers
(Sanford Grossman and Oliver D. Hart,
1980). A continuum of negligible sharehold-
ers implies that any potential raider will not be
able to appropriate the efficiency gains from
his takeover, since the shareholders will refuse
to tender their shares below their post-takeover
value. On the other hand, a large finite number
of shareholders may allow the raider to appro-
priate some or even all the efficiency gains
from his takeover (see Bengt R. Holmstrom
and Barry Nalebuff [1992] and the example
below).

The paradox is caused by the following
‘‘disappearance of information’” in the contin-
uum. In a model taking place over time, agents
have the chance to punish and reward other
agents for their past play. If only the aggregate
play is observed, then the play of one single
agent does not affect the observed outcome in
the continuum case, and hence individual de-
viations cannot be met with rewards or pun-
ishments. With a finite number of players,
there is a change in the aggregate play when-
ever a player deviates. This change may be
very small, but it is perfectly observable. Even
though individual actions are unobservable, a
slight deviation of aggregate play from the
equilibrium outcome indicates that someone
must have deviated. Therefore deviations can
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be punished or rewarded regardless of how
many agents there are.'

For example, in the durable-goods monop-
oly case, Bagnoli et al. (1989) propose that
in the initial period the monopolist sets a
price equal to the reservation price of the
highest-valued buyers and refuses to lower
the price until all of them have bought. This
condition forces the highest-valued buyers
to buy at the initial price. Such a scheme is
impossible with a continuum of anonymous
buyers because the seller could not recog-
nize the change in the sales volume or in the
sales revenue if one buyer does not buy.
More generally, since we have more infor-
mation about individual play with finitely
many players, we can construct incentive
systems that are infeasible with a continuum
of players and that allow us to induce aggre-
gate outcomes that are unattainable in the
continuum case.

There is an intuitive response to this para-
dox: if the play of a large finite number of
agents cannot be perfectly observed, then de-
viations by a small player cannot be easily de-
tected and responded to.? This intuition
suggests that a model with a large finite num-
ber of agents and a small amount of aggregate
noise may have equilibria very similar to those
in the continuum limit.*

The contribution of this paper is to illustrate
the truth of this intuition. We show that a de-
terministic dynamic model with a continuum
of agents is a good idealization of a noisy

' Roy Radner (1980) considers e-equilibria in a finitely
repeated Cournot game and finds that for a fixed number
of repetitions, the ¢ equilibria converge to the competitive
equilibrium as the number of players gets large. The ar-
gument is based on the assumption that firms have unlim-
ited capacity; with a fixed capacity the described paradox
arises also in this case: the continuum limit has the com-
petitive equilibrium as the unique outcome, whereas with
any arbitrarily large but finite number of players collusion
can be sustained.

* A related idea may be found in a paper by Nabil Al-
Najjar (1992).

* When the play of individual agents is observed, an
alternative solution to this paradox is to drop the anonym-
ity assumption in the continuum limit. This option results
in equilibria in which deviations by a single infinitesimal
player lead to a large reaction by other players. Such a
notion of equilibrium is explored by Fudenberg and
Levine (1988).
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model with a large finite number of agents.’
We also argue that the aggregate level of noise
must disappear as the number of players in-
creases, but not too rapidly.

Our results are closely connected to the
work of Edward J. Green (1980), Pradeep
Dubey and Mamoru Kaneko (1985), and
Hamid Sabourian (1990).° These papers point
out the possibility of a discontinuity in exten-
sive-form games when moving from the finite
player to continuum limit. Dubey and Kaneko
propose to fix the discontinuity by postulating
that individual agents assume that their devi-
ations cannot be detected unless they exceed
some small threshold. This assumption is very
strong and implies for games with continuous
strategies and concave payoff functions that
players will behave as if their actions are en-
tirely unobservable irrespective of the number
of players.

Green (1980) and Sabourian (1990) pro-
pose, as do we, that the problem can be fixed
by postulating a model of noisy observation.
In this model, the fact that small deviations are
hard to detect is a conclusion rather than an
assumption. Moreover, for a fixed number of
players and ‘‘small noise’’ the resulting equi-
libria will be similar to the equilibria in the
case with perfect observability.® The work of
Green and Sabourian differs from ours in sev-
eral respects, however. They both study infi-
nitely repeated games, whereas we deal with
a special class of three-period games. Green
considers the case when players are restricted
to trigger-type strategies, and Sabourian

* Another implication of noise in the observation of the
first mover is considered by Kyle Bagwell (1992), who
shows that, when there is no precommitment, the implicit
precommitment value of being the first mover is dimin-
ished when there is even a small amount of noise.

*> We are grateful to Paul Milgrom for pointing out the
connection between our results and the work of Dubey
and Kaneko and to several referees for pointing out the
connection to Green and to Sabourian.

®In Dubey and Kaneko’s (1985) approach, the conti-
nuity with respect to the number of players is achieved at
the cost of introducing a discontinuity in the solution con-
cept: equilibrium behavior for any finite number of players
when the threshold is zero will be radically different from
equilibrium behavior when the threshold is strictly posi-
tive, even if arbitrarily small. Neither Green (1980) nor
Sabourian (1990) considers the effect of noise on the set
of equilibria for a fixed number of players.
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generalizes to all strategies. In contrast to
Green and Sabourian, we use a model of ad-
ditive noise and assume that the standard error
of the aggregate noise goes to zero more
slowly than the inverse of the number of play-
ers. Green and Sabourian each make a more
technical assumption than we do.” Rather than
prove a general theorem applicable to the wid-
est possible variety of dynamic games, we
choose to focus on the simplest class of games
in which the issue of reaction arises: we study
games in which a single large agent can pre-
commit to a reaction to a group of anonymous
agents (either finite or a continuum). We fur-
ther simplify by making the strong anonymity
assumption that the large agent can observe
only the average play of the small agents.

While such a structure may seem very spe-
cial, recent theoretical literature shows that
such a two-stage precommitment equilibrium
is a consequence of reputation-building in a
repeated setting even when precommitment is
impossible. This was implicit in the work of
David Kreps and Robert Wilson (1982) and
of Paul R. Milgrom and John Roberts (1982)
on reputational equilibrium and was made ex-
plicit in the work of Fudenberg and Levine
(1989, 1992). Marco Celentani (1991),
Celentani and Pesendorfer (1992), Klaus
Schmidt (1993), and others have extended the
scope of this result in a variety of ways.

We also specialize by making a linearity
assumption on the payoff function of the small
players. This assumption will always be
satisfied if the large agent can play mixed strat-
egies and the small agents have von Neumann-
Morgenstern preferences. If it fails, the large
agent can use even a very small amount of
noise to randomize his play. This approach al-
lows him to effectively commit to a mixed
strategy in the noisy case, which is impossible
if there is no noise and mixed strategies are
not allowed.

We consider three illustrative applications
of our theoretical results, each a simplifi-

7 Green (1980) and Sabourian (1990) both assume that
the map from the distribution of strategies (endowed with
the weak topology) to probability distributions over out-
comes (endowed with the total variation norm) is contin-
uous. As we note in what follows, our much simpler as-
sumption implies a condition similar to the one assumed
by Green and Sabourian.
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cation of a model that has been studied
extensively. In connection with the Coase
conjecture, we consider a model in which a
monopolist can commit to a supply curve. In
the continuum case and in the noisy finite
case, this model leads to the simple monop-
oly payoff. Without noise and with a finite
number of buyers, the monopolist can
achieve the payoff corresponding to perfect
price discrimination.®

Second, we consider a game between a po-
tential corporate raider and a large number of
small stockholders similar to that discussed by
Grossman and Hart (1980). With finitely
many stockholders, the raider will succeed in
appropriating all the efficiency gains from his
takeover, whereas with a continuum of stock-
holders, the raider cannot appropriate any of
these efficiency gains.

Finally, we consider a simplification of a
model introduced by Stanley Fischer (1980)
to study the time consistency of government
policy. In this model, the government must
choose between a capital tax that is a lJump
sum after household decisions are made
and a distortionary labor tax. If households
anticipate the capital tax, they will not in-
vest. Previous analysts of this model, such
as Varadarajan V. Chari and Patrick J.
Kehoe (1990) have assumed a continuum of
households and considered the optimal pre-
commitment capital tax, or ‘‘Ramsey equi-
librium,”’ as the benchmark ‘‘best possible’’
equilibrium. However, without noise and
with a finite number of households, the gov-
ernment can actually achieve the first best
outcome: if there is sufficient investment,
capital is taxed, whereas if investment is in-
sufficient, a punitive tax on labor is imposed.
Each household realizes that if it provides
insufficient investment it (and everyone
else) will face a punitive tax.

1. The Deterministic Case

We study a game that takes place over three
periods (¢ = 0, 1, 2) between a single large
player (type L) who can precommit in the ini-

8 Note that, in this example, buyer utility is linear in
the seller action (price), and as a result mixed strategies
are not called for.
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tial period to a reaction in the final period and
a large number of identical small players (a
representative individual is denoted S) who
must undertake an action after the precommit-
ment but before the actual move of the large
player.

Formally, we let 7" = {1, 2, ..., n} be a
finite set of n small players who move in pe-
riod 1, while P~ = [0, 1] denotes a continuum
of such players. Each small player undertakes
an action chosen from X5 = [0, 1]. The single
large player may precommit in period O to a
contingent action in period 2 chosen from
X, =10, 11".

Payoffs for a typical small players are given
by ms(xs, x.) where xs is the action taken by
the particular small player. Notice that we as-
sume that each small player’s payoff is inde-
pendent of the actions of other small players.
In addition, letting x = (xs, x_), we assume
the following.

ASSUMPTION 1 (linearity): ws(xs, x.) =
a(xs) + =", bi(xs)-x1, where a, b', ...,
b™ are continuous concave functions and a is
strictly concave.

Although the assumption of linearity in
the large player’s action seems strong, it
is satisfied in the examples we study and,
more importantly, will always be satisfied if
the large player is allowed to play mixed
strategies.’

The payoff of the large player is given by
m.(xs, x.), where the first argument repre-
sents the average play of the small players.

ASSUMPTION 2 (concavity): m (xs, XL) is
continuous in both arguments and concave
in x..

Define s = min, max, ms(x) tobe the pay-
off that any small player can guarantee for
himself. Define the best payoff for the large
player to be

(1) 7 = max m_(x)

x

9 The linearity assumption is needed for our results in
the noisy case: if the large player is constrained to play
pure strategies in a setting in which the small players’
payoffs are not linear in their action, Theorem 3 fails.
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subject to
ms(x) = 7.

To avoid degeneracy, we make the following
assumption.

ASSUMPTION 3 (nondegeneracy): There
is a unique point x* such that x* solves ( 1),
and there is a point X5 so that s (x¥, x) <
ms(Xs, X 0).

This assumption says that there is a unique
pair of actions that give the large player his
best payoff and at that pair of actions the small
players are not playing a best response to the
large player.

Also, define the simple Stackelberg payoff by

(2) 7L = max 7 (Xs, X)

XS, XL

subject to

xs = arg max ws(z, X.).
z

(Note that 7s is strictly concave in xg, and
hence the Stackelberg response of the small
players is unique.)

A representative strategy for all small play-
ers is a o € Xs. If a single small player de-
viates to x this results in the average action of
all small players changing from o5 to

n—1 1

(3) os\Xs = Cfs+;x5.

A strategy for the large player is a measurable
map oy Xs = X¢.

To define our notion of equilibrium, say the
pair (o5, o) isa Stackelberg response for the
small player if

4) ws(0os, o.(0s)) = ms{xs, oL(os\xs)).

A pair (0s, 0L) is a precommitment equilib-
rium if it is a Stackelberg response, and if
for any Stackelberg response (0§, 01),
m(os, oL(0s)) = m.(0s, o1(0s)).

THEOREM 1 (Paradoxical Theorem): If a
game satisfies Assumptions 1-3, then for all
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finite n a precommitment equilibrium exists,
and the unique amount received by player L
in any precommitment equilibrium is ©}¥; If
n = ©, a precommitment equilibrium exists,
and the unique amount received by the large
player is 7, < nf.

II. The Noisy Case

We now suppose that the large player can
observe the play of the small players only with
some degree of imperfection. Lety = (y,, ...,
Y») € X5 denote a vector of play by n small
players. Suppose that the large player observes
a random variable z, where
(5) z= 32 %Jr y'n".

1

The y" are positive scalars and y"n" is an ob-
servational error.

We assume that n” is a random variable
with zero mean and unit variance and that
it possesses a continuously differentiable
density function f". Moreover, we assume
that the derivatives of these density func-
tions are bounded uniformly, including
in n.

We impose the following condition on the
noise process.

CONDITION 1 (slow convergence): y" — 0
and ny" - o«

Condition 1, our key condition, guarantees that,
while the uncertainty vanishes when the num-
ber of small players goes to infinity, it does so
at a rate less than 1/n. To make matters con-
crete, assume that

1 n
(6) Z=;Z()’.~+¢,~)

i=1

where the ¢, are independently and identically
distributed and follow a normal distribution
with zero mean. In other words, the large
player observes all the small players but makes
an observational error in observing each one
play. In this case,

y" =Var(¢,) /\n
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and n" = 27_, ¢;/(y"n) follows a standard
normal distribution. Consequently, Condition
1 is satisfied. It is also possible to consider
other models, in which, for example, the large
player only observes a random sample of the
small players.

The strategy of the large player is now a
map from realizations of z to actions in X,
that is, o, : R = X, . Let F"(z|y) denote the
distribution of z if y = (y, ..., y,) is the ac-
tion taken by the small players. The payoff of
the ith small player is given by

(7) g5y, 00) :fﬂs()’i,UL(Z))d "(z]y)
while the payoff of the large player is

(8) gi(y, o)

= fm <Z yiln, oL(z))dF"(zIy)-

Note that the large player’s payoff depends
on the actual play of the small players and not
on the noisy signal. The idea is that the large
player must respond to the small players at a
time when he does not yet have complete in-
formation about their play, although later, after
he has moved, he will find out what they did,
and this will determine his payoff. Note also
that in the infinite case, Condition 1 implies
that all the definitions are unchanged from the
previous section.

If all small players choose o5 we denote
this by [os] = (o5, ..., og); if all small
players except one choose o and the deviant
player chooses x5 we write [o5]\xs = (o5,
cesXs, ..., Og). A pair (o5, o) is a nOISy
Stackelberg response for small players if, for
all xg,

(9)  gs(los), ou) = gs([osl\xs, 00).

A pair (o5, o) is a noisy precommitment equi-
librium if it is a Stackelberg response, and if
for any Stackelberg response (0§, o),

gillosl, o) = gi(loil, o0).

THEOREM 2 (Noisy Paradoxical Theo-
rem): If a game satisfies Assumptions 1-3,
then for any n and any € > 0 there is a y" >
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0 such that the payoff to the large player
in any noisy precommitment equilibrium is
larger than w{ — ¢.

Theorem 2 shows that, for a given number
of players and for small noise, the noisy pre-
commitment equilibrium will be very close
to the precommitment equilibrium in the
case with perfect observability. This result
should be seen as a ‘‘continuity check’’ for
a fixed number of players. It shows that the
equilibrium outcome of the game with per-
fect observability is preserved for a fixed
number of players when the noise is small,
and hence there is no discontinuity in the
solution concept when moving from the
precommitment equilibrium with perfect
observability to the noisy precommitment
equilibrium.

THEOREM 3 (Not-So-Paradoxical Theo-
rem): If a game satisfies Assumptions 1-3
and if the noise satisfies Condition 1, a noisy
precommitment equilibrium exists. In this
case, any limit of noisy precommitment pay-
offs to the large player as n = ® is equal
to w.

Fix a sequence (y") satisfying Condition 1.
Clearly (ay"), a > 0, also satisfies that con-
dition. We may view « as a measure of how
much noise there is for small values of n,
whereas the tail of (y") determines the noise
for large values of n. We summarize our re-
sults by saying that if « is sufficiently small,
for small n, the noisy precommitment payoff
will be close to the maximum possible i,
while if n is large, it will be close to the simple
Stackelberg payoff 7 .

COROLLARY: Suppose a game satisfies
Assumptions 1-3 and Condition 1. For any
€ > 0and any N > 1 there is an o > 0 and
an N, N < N < o, such that, if the noise is

(ay"),

(i) if n = N then the payoff to the large
player in a precommitment equilibrium
with n small players will be between ;"
and 7 — €

(ii) if n = N then the payoff to the large
player in a precommitment equilibrium
will be between ™, + € and ™, — €.
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The Corollary is an immediate conse-
quence of Theorems 2 and 3. It shows that
the equilibrium payoff to the large player is
continuous in both directions: if the noise is
small, then for a small number of players the
equilibrium payoff will be similar to the
perfect-observability case, whereas if the
number of players is large, then the payoff
to the large player will be similar to the con-
tinuum case.

III. Economic Examples

We will now consider three examples. All
are simplified versions of games that have
been studied in the literature. The first is con-
nected with the Coase conjecture, the second
with the free-rider problem in corporate take-
overs, and the third with time-consistency of
government policy.

Example 1: The large player is a monopolist,
and the small players are potential buyers. The
monopolist sets the price x, as a function of
the realized demand, and buyers choose a
quantity to purchase, xs. The buyers must
choose how much to purchase before knowing
the price but after the monopolist has decided
on the price as a function of average demand.
Let p(xs) = 1 be the (downward-sloping) in-
verse demand curve of a typical buyer. We
assume that p(1) = 0. There is no cost of pro-
duction.

With perfect observation and a finite popu-
lation, the monopolist can effectively extract
all the consumer surplus by setting a ‘‘take it
or leave it”’ price and by committing to not
selling anything if demand is insufficient. With
noise and a large population, such a commit-
ment is not feasible, because the monopolist
cannot tell if there is sufficient demand of
every consumer and so must settle for the mo-
nopoly price.

To see why this is the case, we simply
cast the model into our framework. The
utility of a buyer is given by consumer
surplus:

(10) ms(x) =f p(z)dz — xpxs.

Notice that this function is linear affine in x ,
so that Assumption 1 is satisfied. The payoff
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of the monopolist is 7 = x_xs, so that As-
sumption 2 is satisfied.

In this game, 7" corresponds to the profit
realized by the monopolist when he gets all
the consumer surplus, while 7 corresponds
to the simple monopoly profit. Without
noise, the monopolist can commit to the
policy of charging a price equal to the total
consumer surplus if demand is 1 (i.e., if
every consumer demands exactly one unit)
and charging a choke price such as 1 other-
wise. It is then an equilibrium for each in-
dividual buyer to purchase one unit, since
each buyer realizes that by purchasing less,
he will in fact face the choke price. When
there is noise and the monopolist can ob-
serve his demand only imperfectly, such an
extreme policy by the monopolist will not
work, and Theorem 3 shows that in this case
the monopolist (to a good approximation)
can do no better than the simple monopoly
profit.

Remark: In Bagnoli et al. (1989), the
durable-goods monopolist is able to extract
all the surplus by using the following *‘Pac-
man strategy’’: Every period the durable
good is offered at a price equal to the highest
reservation price of the remaining buyers.
Every buyer with a reservation price equal
to the current price realizes that if he decided
to wait instead of purchasing today he would
face the same price in any future period until
he finally purchases. This strategy has the
same spirit as the ‘‘choke-price strategy’’
described above. Similar to the monopoly
example above, slightly imperfect observa-
tion of the realized demand will guarantee
that the ‘‘Pacman strategy’’ cannot be
successful.

Example 2: The large player is a potential
raider of a corporation. The takeover will in-
crease the value of the firm by 1 > n > 0 due
to better management. The initial value of the
corporation is 0. Suppose every shareholder
owns an equal number of shares. Each share-
holder decides a fraction of his shares xg €
[0, 1] to be offered on the market (at a given
price p, where 0 = p < 7). The raider
chooses a takeover probability x;, € [0, 1] that
is conditional on the total fraction of the com-
pany’s shares offered. If he decides to take
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over the company, then he purchases the of-
fered shares and implements the improve-
ments in the corporation that lead to the
increase in value of the company.'® The pay-
off for the raider is x; xs(n — p). The payoff
for the shareholder is px; x5 + x (1 — x5).
Note that all our assumptions are satisfied in
this case.

In the finite case without noise, the raider
can commit to a policy of taking over the
company only if 100 percent of the shares
are offered. This will allow him to ap-
propriate almost all the efficiency gains
due to his takeover if the price p was
set close to zero. Hence w{* = n — p in this
case.

With a continuum of agents, the precom-
mitment equilibrium will not allow the
raider to appropriate any of the efficiency
gains due to his takeover. Irrespective of the
raider’s policy, and for all p < 7, every
shareholder will set x¢ = 0 in this case.
Theorem 3 shows that the observation of
Grossman and Hart (1980) approximately
carries over to the finite case, if the raider
can only imperfectly observe the number of
shares offered.

Example 3: The large player is a government
that must choose whether to place a tax on
capital or use a distortionary tax in an effort
to raise adequate revenue. Small players are
households endowed with a single unit of cap-
ital; if capital is not taxed, it may be invested
to yield a return of (1 + r)xs where xs =< 1 is
the investment and r > 0; if capital is taxed,
investment yields no return. If each household
invests to the maximum and capital is taxed,
the government collects 1 + r. To raise the
same amount of revenue by an alternative tax
(on labor, say) costs each household ¢ > 1 +
r, since the tax is distortionary. Let x; be the
probability that the government taxes capital.
Household utility is

(11)  ms(xs, x) = (1 = x)(1 + rxs ~ ¢)
+ x (1 — xg).
' For simplicity we assume that the raider can imple-

ment the efficiency improvements even if he controls less
than 50 percent of the corporation.
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Since the government uses a mixed strategy,
Assumption 1 is satisfied. Government util-
ity is equal to the households’ utility, except
that if capital is taxed and if households in-
vest less than the maximum, there will be
a revenue shortfall resulting in a loss of
p(1 — x5), where p > 1. Government utility
is therefore

(12) ms(xs, x) = (1 — x)(1 + rxs —c)

+x(1 = xs)(1 = p)

which certainly satisfies Assumption 2.

In this example, m¢ = 0 corresponds to
the first best. Inspection shows that 7, = 0,
and m;, = O only if households invest one
unit and the probability of a tax on capital
is 1. Note that x;, < 0 and hence the first
best allocation satisfies individual rational-
ity. At the government maximum, house-
holds receive 0 and can improve their utility
by reducing investment, so Assumption 3 is
satisfied.

In this context, 7, is known as the second-
best, or Ramsey, equilibrium. A calculation
shows that this result is obtained when x; =
1/(1 + r), in which case households are
indifferent to the level of investment.
Moreover, it is best for the government if
households invest to the maximum in this
case. Maximum investment increases the
utility when there is no capital tax and re-
duces the penalty when there is a capital tax.
The utility actually attained is . = r[1 —
c/(1+nr))]<0.

Previous analysts of the problem (see
Fischer, 1980; Chari and Kehoe, 1989)
have always dealt with the continuum
case and concluded that the Ramsey equi-
librium is the best possible. Questions have
focused on whether the government can ac-
tually precommit and so achieve the payoff
corresponding to the Ramsey equilibrium,
or whether there is a time-inconsistency
problem. The analysis here shows that,
with perfect observation and finitely many
households, the government can do signifi-
cantly better than the Ramsey equilibrium:
the government taxes only capital provided
there is enough investment. If there is not
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enough investment, the government fol-
lows a punitive strategy of taxing only
labor. Note that the payoff of the house-
holds when only labor is taxed is (1 + r —
¢) <O0.

APPENDIX

PROOF OF THEOREM 1 (Paradoxical The-
orem):

In the finite case the large player can
use the following policy. If x§ is observed
then the large player chooses xi*. If any o5
+ x& is observed then the large player
chooses x., where x; satisfies max, s (Xs,
x.) = 7s. By the construction of x* no
small player has an incentive to deviate
from x¥ since 7& = ms. Since 7 is the
highest payoff the large player can get in
any precommitment equilibrium, the above
policy is optimal.

In the continuum case, since any single
player deviation does not change the aggre-
gate og, the optimal policy for the large
player can be taken to be a constant action.
Assumptions 1 and 2 ensure that there is a
pair (x., xs) such that m (xs, x.) = T and
xs is a best response to x.. Moreover 7 <
7 by Assumption 3.

PROOF OF THEOREM 2 (Noisy Para-
doxical Theorem):

Choose £ = (&g, £.) so that 0 < £5 < 1
and so that m (£) = 7; — & and 75(£) =
s + &, & > 0. Clearly, by continuity of
the payoff functions and by Assumption
3, such an £ exists. Choose & such that
0 < né < min[£,, 1 — £.] and so that
7(%) = mi(xs, X)) — g?forj=1L,S and
for all xg € [£s — né, &5 + nd]. Further
choose K and y" so that Pr(jz — %s| >
Ky=1—-gand Pr(jz —xs| > K)>1 —
g for |x — £5| > 6.

Let the large player use the following strat-
egy: if |z — %s| = K then he chooses % and
if |z — £s| > K he chooses x,. Given this
strategy, note that whenever all but one small
player choose xs € N = [£5 — 6, &5 + 6], it
is optimal for the deviant small player to
choose an x§ such that

n—1

1
x5 + —xi€ N
n n
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(A1) J.ws(ag, o1 ())dF"(z|[0§]) — f ws(xs, 01(2))dF"(z|[08]\xs)

= f (ms(o%, 01(2)) — ms(xs, 01(2)))dF"(z|[02]\xs)

+ f 7s(0%, o1()(dF"(z|[08]) — dF"(z|[08]\xs)) = O

To see this, note that by choosing an x§ €
[£s — nd, &5 + né] the small player can guar-
antee that

n—1

1
xs+—x§=f5€.7\f
n n

which in turn implies that with probability
1 — £ the large player will choose £.. Thus,
by putting [(n — 1)/n]lxs + (1/n)x§ € N
the small player can guarantee himself a
payoff of 75(£)(1 — &) — &° + emgs, which
for small ¢ is clearly better than what the
small player could get by choosing an x; for
which the aggregate action is outside N. By
a simple fixed-point argument, it follows
that there exists an s € N such that if n —
1 players choose X5 then it is optimal for the
nth player to choose %. [For any x5 € N
letf(xs) =[(n—1)/nlxs+ (1/n)x§, where
x§ is the best response of a small player; f
is a continuous function f: N — N and
hence there is a fixed point of f.] It remains
to be shown that at ¥ the probability of pun-
ishment is small. A simple calculation
shows that at X the probability of punish-
ment cannot exceed 2, since each small
player always has the option of choosing an
xg such that the aggregate action is £5. Thus
the described strategy guarantees the large
player a payoff of 7 (£)(1 — 2¢&) + 2em. =
7 (1l — 2e) — & + 2em, where m is the
payoff the large player receives if he forces
the small player’s payoff down to its min-
max value. Note that in any precommitment
equilibrium, the large player has to get a
payoff at least as large as the payoff of the
indicated strategy. Therefore, since ¢ is ar-
bitrary the proposition follows.

PROOF OF THEOREM 3 (Not-So-
Paradoxical Theorem):

Let 0§ be a sequence converging to og, and
let of.(z) be such that ¢§ is a Stackelberg re-
sponse to oy . The loss to the ith small player
from deviating from ¢ to xs in the n-player
game is given by equation (A1) above. Note
that

(A2) [ 1ariton) - arralosi)

zf fn<z—"<ffs'> —f"(“(";“’?“’g)/”))‘dz.

¥ Y
Using Taylor’s theorem, this equals

Xs

— O'g
ny"

w3 [|prawa)

Since we have assumed that the Df" are
uniformly bounded, Condition 1 implies
that: "'

(A4) lim | |dF"(z|[o4])

— dF"(z|[os1\xs)| = 0.

' The integral of the absolute value of the derivative
to the measure is the total variation of the measure. This
condition essentially means that small changes in the dis-
tribution of players’ actions have a small effect on the
distribution of outcomes in the total variation norm. This
is the assumption used by Green (1980) and Sabourian
(1990).
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(A5) f 7s((xs, 01(2)) — 7s(o%, oi(2))dF"(z] [o§]\x5) =< &”

Thus it follows that inequality (A5), above,
must hold, where lim,-.e"” = 0. Therefore,
there is a sequence of probability measures on
Xs, G"(q) such that

(A6) f (7s(xs, @) — ms(0%, 9))dG"(g) = &"

from which it follows that

(A7) f (ms(xs, q) — ws(os, Q))dG"(CI)

=¢g"+ Sgplﬂs(ag, q) — m(os, q)|.

Let G(-) be a weak limit point of the sequence
G”(-)."? Since by assumption 0§ = 05, WE
conclude that

(A8) [ (rstas, @)~ ms(os. ) dG(g) = 0.

Set x, = | qdG(q) to the expected value of
the play of the large player according to G.
Because 7 is linear affine in x, it follows
that

(A9) me(xs, x) — 7s(os, x) = 0.

On the other hand, the large player gets
(A10) fm(oé, oi(2))dF"(z|[o5])

- f m(0s, )dG(q) = m (05, x.)

"2 That is, the sequence has a subsequence that con-
verges to this point in the weak topology. This topology
is characterized by the convergence of the expectation of
continuous functions, and the space of probability mea-
sures on a compact set is known to be compact in this
topology (see e.g., K. R. Parthasarathy, 1967 theorem 6.4,
p. 45).

where the final inequality follows from the as-
sumption that the large player’s payoff is con-
cave in his own action. We conclude that the
limit of the precommitment payoff to the large
player in the finite games is not greater than
in the limit game. Finally, we observe that
since an optimal precommitment in the limit
game is to precommit to a constant function,
this is feasible and yields approximately the
same payoff in the finite game for large n, so
that the limit of precommitment payoffs is not
smaller than the precommitment payoff in the
limit game.
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