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STEADY STATE LEARNING AND NASH EQUILIBRIUM

By Drew FUDENBERG aND Davip K. LEVINE!

We study the steady states of a system in which players learn about the strategies their
opponents are playing by updating their Bayesian priors in light of their observations.
Players are matched at random to play a fixed extensive-form game, and each player
observes the realized actions in his own matches, but not the intended off-path play of his
opponents or the realized actions in other matches. Because players are assumed to live
finite lives, there are steady states in which learning continually takes place. If lifetimes
are long and players are very patient, the steady state distribution of actions approximates
that of a Nash equilibrium.

Keyworps: Learning, Nash equilibrium, multi-armed bandits.

1. INTRODUCTION

WE STUDY AN EXTENSIVE-FORM GAME played repeatedly by a large population
of players who are matched with one another at random, as in Rosenthal (1979).
As in Fudenberg and Kreps (1991), we suppose that players do not know the
strategies their opponents are using, but learn about them from their past
observations of the opponents’ play. At the end of each period, each player
observes the realized actions of his own opponents; players do not observe play
in the other matches. The key feature of such learning is that the stage game
may have information sets that are not reached in the course of play, and
observing the opponents’ realized actions does not reveal how the opponents
would have played at the unreached information sets. Thus, even if the players
play the stage game many times, they may continue to hold incorrect beliefs
about the opponents’ play unless they engage in a sufficient amount of “experi-
mentation.”

In our model, individual players play only a finite number of periods; new
players enter so that the total size of the population is constant. Entering
players believe that they face a fixed but unknown distribution of opponents’
strategies. They have nondoctrinaire prior beliefs about this distribution which
they update using Bayes rule, and their actions in each period are chosen to
maximize the expected present value of their payoffs given their beliefs. Steady
states always exist. When lifetimes are short, steady state play is mostly deter-
mined by the priors, as players have little chance to learn from experience.
Steady states need not be Nash equilibria if lifetimes are long but players are
impatient, because players may not learn their opponents’ off-path play. In-
stead, steady states with impatient players correspond to the “self-confirming

! This paper presents the results on steady state learning from our (1990) paper “Steady State
Learning and Self-Confirming Equilibrium.” We thank Andreu Mas-Colell and three anonymous
referees for useful comments on the previous paper, and Youngse Kim and Peter Klibanoff’s careful
proofreading. Financial support from National Science Foundation Grants SES 9008770 and SES
9023697, the John S. Guggenheim Foundation, and the UCLA Academic Senate is gratefully
acknowledged.
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548 D. FUDENBERG AND D. K. LEVINE

equilibria” introduced in our (1990) paper.? Our main result is that if lifetimes
are long and players are sufficiently patient, then expected-value maximization
implies that players will choose to do enough experimentation that steady states
correspond to Nash equilibria of the stage game.

To motivate these results, fix an extensive-form game of perfect recall, and
suppose that each player knows its structure. In general, this knowledge is not
enough for a player to decide how to play; he must also predict the play of his
opponents. Nash equilibrium and its refinements describe a situation in which
each player correctly predicts the play of his opponents. To understand when
equilibrium analysis is justified therefore requires an explanation of how play-
ers’ predictions are formed, and when they are likely to be accurate.

One classic explanation is that an outside “mediator” suggests a strategy
profile to the players, who accept it unless some player could gain by deviating.
A second classic explanation is that the game is dominance solvable and it is
common knowledge that players are Bayesian rational, so that introspection by
the players leads them all to the same predictions. A more recent explanation,
introduced by Aumann (1987) and further developed by Brandenburger and
Dekel (1987) and Tan and Werlang (1988), is that predictions will be correct if
they are consistent with Bayesian updating from a common prior distribution.

This paper contributes to the development of a fourth explanation, that Nash
equilibrium is the result of learning from past observations. In our model, the
steady state distributions of strategies played approximate those of Nash equi-
libria if players live a long time and are also sufficiently patient. The intuition
for this is roughly the following.

If a player’s prior is not degenerate, he will learn a great deal about the
results of any action he chooses many times; this is “passive learning.” If the
player is patient, he will choose to invest in discovering what his best strategy is.
This is accomplished by “active learning” or “experimentation,” meaning that
the player will sometimes play actions that do not maximize the current period’s
expected payoff given his current beliefs, so that he may learn whether his
beliefs are in fact correct. Without experimentation, players can persistently
maintain incorrect beliefs about their opponents’ off-path play, which is why
steady states need not correspond to equilibria unless players experiment
sufficiently often.

Our focus on active learning differentiates the paper from the literature on
learning in rational expectations environments, as pioneered by Bray (1982). In
that literature, players observe system-wide aggregates, and thus have no reason
to experiment. The focus on active learning also differentiates the paper from
that of Canning (1990), which in other respects is quite similar. Canning studies
two-player simultaneous-move stage games, and supposes that players live
forever but only remember their last T observations. He shows that when T is

2 This concept is closely related to the “conjectural equilibria” of Battigalli and Guatoli (1988),
the “rationalizable conjectural equilibria” of Rubinstein and Wolinsky (1990), and the “private
beliefs equilibrium” of Kalai and Lehrer (1991a).
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large, the steady states approximate Nash equilibria. We should also mention
the work of Kalai and Lehrer (1991b) which studies Bayesian learning in a
setting where the same players are matched with one another in every period. In
their model, unlike Canning’s, active learning is possible, but active learning is
not necessary for their main result, which is that play eventually resembles that
of a Nash equilibrium of the repeated game.

Our study was inspired primarily by Fudenberg and Kreps (1991), who
emphasized the importance of active learning in justifying Nash equilibrium.
They showed by example how passive learning without experimentation can lead
to steady states that are not Nash. There are two main differences between their
work and ours. First, Fudenberg and Kreps develop a model of bounded
rationality, making ad-hoc assumptions about players’ behavior, while we as-
sume that players are Bayesian expected-utility maximizers. Second, Fudenberg
and Kreps analyze the dynamic evolution of a system where all players become
more experienced over time, and characterize the states to which the system can
converge, while we analyze the steady states of a stationary system.

The steady state model has several comparative advantages. Our model can
describe situations where the players’ lifetimes are moderate and the inexperi-
enced players have a substantial influence, although we do not study such
situations here. Our model is mathematically more tractable, which enables us
to solve for the optimal Bayesian policies. Finally, in the Fudenberg and Kreps
model, players act as if they are facing a stationary environment even though
the environment is not stationary. In the steady states we analyze, the players’
assumption of stationarity is justified.

Both papers avoid the question of global stability, for which general results
seem unlikely.®> Fudenberg and Kreps do develop several notions of local
stability and establish global convergence for the class of 2 X 2 simultaneous-
move stage games. Our model is rich enough to analyze local stability, but we
should point out that such an analysis would need to consider the evolution of
the system when the players’ belief that the system is in a steady state is
mistaken.

2. THE STAGE GAME

The stage game is an I+ 1-player extensive form game of perfect recall.
Player i =1+ 1 is nature. The game tree X, with nodes x € X, is finite. The
terminal nodes are z € Z c X.* Information sets, denoted by 4 € H, form a
partition of X \ Z. The information sets where player { has the move are
H;cH, while H_;=H \ H; are information sets for other players (or nature).
The feasible actions at information set h € H are denoted A(h);°> A, =
U nen,A(h) is the set of all feasible actions for player i, and 4_,= U ;,,;4;
are the feasible actions for player i’s opponents.

3See Shapley (1964) and Canning (1989).
To avoid a trivial special case in one of our proofs, we will suppose #Z > 1.
5 We denote the actions so that AR NAWH)=D for h+H.
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A pure strategy for player i, s;, is a map from information sets in H; to
actions satisf?ring s{h)€A(h); S, is the set of all such strategies. We let
ses= X :IS,- denote a pure strategy profile for all players including nature,
and s_;€S8_;= X _.S. Each strategy profile determines a terminal node
{(s) € Z. We suppose that all players know the structure of the extensive form
—that is, the game tree X, information partitions H; and action sets A4;. Hence,
each player knows the space § of strategy profiles, and can compute the
function ¢. Each player i receives a payoff in the stage game that depends on
the terminal node. Player i’s payoff function is denoted u;: Z — R. We let U be
the largest difference in utility levels, U = max; , , lu(z) —u(z)).

Let A(-) denote the space of |probability distributions over a set. Then a
mixed strategy profile is o€ X :IA(S,»). For ease of exposition, we assume that
nature plays a known mixed strategy o, ;.°

Let Z(s;) be the subset of terminal nodes that are reachable when s, is
played, that is, z € Z(s;) if and only if for some s_;€S_,, z = {(s). Similarly,
define X(s;) to be all nodes that are reachable under s;, not merely terminal
nodes. In a similar vein, let H(s;) be the set of all information sets that can be
reached if s; is played. In other words, & € H(s,) if there exists x € X(s;) with
x €h.

We will also need to refer to the information sets that are reached with
positive probability under o, denoted H(o). Notice that if o_; is completely
mixed, then H(s, o_,)=H(s,), as every information set that is potentially
reachable given s; has positive probability.

In addition to mixed strategies, we define behavior strategies. A behavior
strategy for player i, 7;, is a map from information sets in H; to probability
distributions over moves, so that m,(h) € A(A(h)); II, is the set of all such
strategies. As with pure strategies, m € I[T= X ::H,-, andw_,ell_;= Xj*iﬂj.
We also let 1;(a) denote the component of (k) corresponding to the action
a € A(h). Finally, let {(7) € A(Z) be the probability distribution over terminal
nodes induced by the behavior strategy .

Since the game has perfect recall, each mixed strategy o; induces a unique
equivalent behavior strategy denoted m,(-|0;).” In other words, m(k|a;) is the
probability distribution over actions at 4 induced by o;, and w(alo;) is the
probability of the action a € A(h).

For each node x and each player i, let {a_,(/, x)}}, be the collection of all
actionis of players other than i (including nature) which are predecessors of x.
(Note that L is equal to the length of the path to x minus the number of nodes
in the path that belong to player i.) If pure strategy s, is such that x € X(s;),
player i believes that the probability of reaching node x when s; is played and

¢ Our main result (Theorem 5.1, about Nash equilibria) extends in a straightforward way to the
case where nature’s move is drawn from a fixed but unknown distribution; extending Theorem 6.1
requires a modification of the definition of self-confirming equilibrium.

7 This is known as Kuhn’s Theorem (Kuhn (1953)). Recent presentations of this result can be
found in Fudenberg and Tirole (1991) and Kreps (1990), among other places.
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the opponent’s strategies are m_; is

(2.1) p,-(xlw_,-)=11:[l7r_i(a_,-(l,x)).

Notice the convention we use: each node x is assigned a number p(x|m_;)
which is the probability of reaching that node if any s; is played for which
x € X(s;). Naturally if x & X(s;) the probability of reaching x is zero, while
L, e zis,P{zlm_;) = 1. The effect of changing s, is not on the numbers p,, but
rather the set of nodes X(s;) that can be reached.

We now model the idea that a player has beliefs about his opponents’ play.
Let u,; be a probability measure over II_;, the set of other players’ behavior
strategies. Fix s;. Then the marginal probability of a node x € X(s,) is

(22)  pi(xlu) = [p(xlw_)ui(dm_)).
This in turn gives rise to preferences

(2.3) “i(sinui)E”i(si,Pi('lﬁ‘i))E Z Pi(zll‘i)”i(z)-

ze€Z(sy)

It is important to note that even though the beliefs u; are over opponents’
behavior strategies, and thus reflect player i’s knowledge that his opponents
choose their randomizations independently, the marginal distribution p,(-|u,)
over nodes can involve correlation between the opponents’ play. For example, if
players 2 and 3 simultaneously choose between U and D, player 1 might assign
probability 1/4 to m,(U) = w4(U) = 1, and probability 3/4 to 7,(U) =7,(U) =
1/2. Even though both profiles in the support of u; suppose independent
randomization by players 2 and 3, the marginal distribution on their joint
actions is p(U,U)=7/16 and p(U, D) =p(D,U) =p(D, D) =3 /16, which is a
correlated distribution. This correlation reflects a situation where player 1
believes some unobserved common factor has helped determine the play of both
of his opponents. Since the opponents are in fact randomizing independently,
we should expect player i’s marginal distribution to reflect this if he obtains
sufficiently many observations, but until observations are accumulated, the
correlation in p(-|u;) can persist.

Frequently u; will be either a point mass at 7 _;, or have a continuous density
g; over w_,. In this case we write p(x|m_,), u(x,w_;), p{xlg,), and ux, g,)
respectively.

3. STEADY STATES

Corresponding to each player (except nature) in the stage game is a popula-
tion consisting of a continuum of players in the dynamic game. In each
population, the total mass of players is one. There is a doubly infinite sequence
of periods,..., —1,0,1,..., and each individual player lives T periods. Every
period 1/T new players enter the ith population, and we make the steady state
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assumption that there are 1/T players in each generation, with 1/T players of
age T exiting each period.

Every period each player i is randomly and independently matched with one
player from each population i’ # i, with the probability of meeting a player i’ of
age t equal to its population fraction 1/7.8 For example, if T = 2, each player is
as likely to be matched with a “new” player as an “old” one. Each player i’s
opponents are drawn independently.

Over his lifetime, each player observes the terminal nodes that are reached
in the games he has played, but does not observe the outcomes in games
played by others. Thus, each player will observe a sequence of private his-
tories. The private history of player i through time ¢ is denoted y/=
(s;(1), z(1),..., s(2), z(¢)). Let Y; denote the set of all such histories of length no
more than 7. We let #(y,) denote the length of a history y; € Y,. New players
have the null history 0, and we set z(0) =0.

A rule for a player of the ith kind is a map r;: Y; — §; that specifies player i’s
choice of pure strategy for each possible observation. (Note that if ¢(y;) =T,
r(y,) has no meaning because player i does not get to play at 7+ 1.)

Suppose for the moment that all players in population i use the same,
arbitrary, deterministic rule r;, and face a sequence of opponents whose play is
a random draw from a stationary distribution. (This is in fact the case in the
steady states of our model.) We will soon specialize to the case where the rules
are derived from maximizing expected discounted values given prior beliefs, but
it is helpful to develop the mechanics of the matching model before introducing
that complication.

A steady state for given rules r; specifies fractions 6,(y,) of each population i
in each experience category y; such that after each player meets one opponent
at random and updates his experience accordingly, the population fractions are
unchanged. Specifically, if 8, € A(Y;), the fraction of population i playing s; is
(3.1) 6,(s;) = x 6,(y:)-

ilr(y)=s}
Also define 6, , = o, ,. We may then define a map f: X :=1A(Yi) - X f=1A(Y,-)
by assigning f[0],(y,) to be the fraction of player i’s with experience y; after

randomly meeting opponents drawn from 6. The new entrants to the population
have no experience, so

(32)  f[6](0)=1/T.

The fraction having experience (y;, r,(y,), z) is the fraction of the existing 6,(y,)
that met opponents playing strategies that led to z. Noting that £ ![s;, - 1(z) are
those strategies, let S(z) = ¢ '[r(y,), - I(z) so that

(3.3) f[o]i(yi’ri(yi)’z)=0i(yi) E Hk%igk(sk)‘

s_,€S(2)

8 Boylan (1990) has shown that this deterministic system is the limit of a stochastic finite-popula-
tion random-matching model as the number of players goes to infinity.
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Finally, it is clear that
(34) fL0)i(yirsi,2) =0 if s, #r,(y,;).
DerINITION 3.1: 0 € Xf=1A(Y,-) is a steady state if 6 = f[6].
To illustrate this definition, consider the game “matching pennies,” with
S;=S,={H,T}. Suppose that T =2 and
(3.5) r(0)=H, r(H,H)Y=H, r(HT)=T,
r,(0)=T, r,(H,T)=T, ry(T,T)=H.
(Note that we do not need to specify (T, ) or r,(-, H) as such histories never
occur—young player 1’s always play H and young player 2’s always play T.)
In a steady state we have:
0,(H,H)=0,0)0,(T,T),
o012, D) = 00047 T)
0,(H,T) =0,(0)[6,(0) + 6,(H,T)],
0,(H,T) =6,(0)[6,(0) +6,(H, H)],
02(0) = 1/29
BZ(T’ T) = BZ(O)OI(H’ T)’

(3.6)

a system of quadratic equations.

Computation shows that 6,(0)=1/2, 6,(H,H)=1/10, 0,(H,T)=4/10,
0,(00=1/2, ,(H,T)=3/10, and 6,(T,T) =2/10, from which it follows that
0,(H)=0,0)+6(H,H)=6/10 and 6,(H)=0,T,T)=2/10. Note that the
average play of the player 1’s and the player 2’s corresponds to a mixed strategy
of the stage game, even though all individuals in both populations use determin-
istic rules. (Canning (1989, 1990) makes the same point.)

THEOREM 3.1: For any rules r; and nature’s moves 0, ,, a steady state exists.

Proor: For given 8, ,, f is a polynomial map from X f=lA(I/i) to itself, and
so it has a fixed point. Q.E.D.

Given a steady state 6 € X ! A(Y) we may easily compute the population
fractions 6, € A(S,) playing each strategy by (3.1). Conversely, given the steady
state fractlons we can calculate the experience levels recursively by

(37 6i(y(0)=1/T,

oz(yi’ri(yi)7z)=0;(yi) > Hk#i(;k(sk)?
s_,€8(2)

0:(y,8,2z)=0 if s;#r(y).

If we then recalculate 0’ using (3.1) we have a polynomial function f mapping
X A(S ) to itself. We may equally well characterize a steady state as a fixed
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point of f, and calculate the corresponding fixed point of f using (3.7). Since
A(S;) is much smaller than A(Y)), this is of some practical importance.

4. VALUE MAXIMIZATION GIVEN BAYES STATIONARY BELIEFS

Our interest is not in arbitrary rules r; but in rules derived from maximizing
the expected discounted sum of per-period payoffs given exogenous prior
beliefs. More precisely, we suppose that each player’s objective is to maximize

1-87

T
EY 8 'u,

t=1

(4.1)

where u, is the realized stage game payoff at ¢ and 0 <& < 1. Each population
believes that it faces a fixed (time invariant) probability distribution of oppo-
nents’ strategies, but is unsure what the true distribution is.

Population i’s prior beliefs are over behavior strategies. We will assume
throughout that the players’ beliefs about nature’s moves are correct, that is, are
concentrated on the true value m,, ,(-|g)’. ;). We will also suppose that the
players’ beliefs about their opponents strategies are nondoctrinaire.

DEerINITION 4.1: Beliefs w, are nondoctrinaire if for each player i the projec-

tion of u; on Xj +i 1411 1s given by a strictly positive density function g;.

It is important to emphasize that player i’s beliefs about player j correspond
to the average play of all player j’s and not the play of a particular individual.
As in the matching pennies example of the last section, a mixed distribution
over player j’s play may be the result of different subpopulations of the player
j’s playing different pure strategies.

For notational convenience, we suppose that all player i’s begin the game
with the same prior beliefs g!. All of our results extend immediately to the case
of finitely many subpopulations of player i’s with different initial beliefs.

We let g,(-|z) denote the posterior beliefs starting with prior g, after z is
observed:

(42) gi(m_ilz) =1’i(z|7"—i)gi(77'—i)/Pt(z|gi)~

Let V;*(g,;) denote the maximized average discounted value (in current units)
starting at g, with k periods remaining. Bellman’s equation is

(43) Vi(g) = mag (1= )ui(s;, 8) + o > pi(zlgi)l/;'k_l(gi( “1z))
5 €9 z€Z(s)

where V,%(g,) =0, and ¢, = 8(1 — 8% 1) /(1 — §%). Let s{(g;) denote a solution
of this problem.
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Let g;(- ly;) be the posterior density over opponents’ strategies given sample
y;, and let p,(:|y;) be the corresponding distribution on terminal nodes. It will
often be convenient to abbreviate V;*(g,(- [y,)) as V*(y,), sk(g,(- ly,)) as sk(y)),
and ui(si, g,( |y,)) as u,-(S,-|)’,-)-

The optimal policy is r(y,)=s!"'"?)(g,(-|y;). Note that this function is
independent of the true value of the steady state.’ (The steady state does
influence the distribution of observations and hence the distribution of actions
played.) Thus by Theorem 3.1 a steady state exists.

These steady states are not very interesting if lifetimes are short. For example
if T=1 the entire population consists of inexperienced players, each of whom
plays a best response to his prior beliefs and then leaves the system. Our
interest is in the nature of steady states in the limit as lifetimes 7 increase to
infinity and & goes to one.

For h € H_; and a € A(h), let n(aly,) be the number of times the move a has
been observed in the history y;. We define n(x|y;) and n(kly,) similarly, and set
n(s;ly,) to be the number of times player i has played s,.

Let 7 (-ly;,) be the sample average of player i’s observations about his
opponents’ play. That is, for each h € H_; and a € A(h),

#L:(aly;) =n(aly;)/n(hly;)

with the convention that 0/0 = 1. Let p,(x|y;) be the distribution on nodes
induced by the sample averages 7', that is p,(x|y,) =p(x|#° (- |y;). Since
p(+ ly,) reflects the extensive form of the game, it is not in general equal to the
sample average on terminal nodes z € Z(s;). For example, consider a game
where if player 1 moves L, players 2 and 3 observe player 1’s move and
simultaneously choose H, or T, and H, or T, respectively. If the sample y; is 4
observations at (L, H,, H;), 1 observation each of (L, H,,T;) and (L, T,, H5),
and 0 observations of (L, T,, T5), then

ﬁi((LaTz’T3)|yl) =(1/6)(1/6) =1/36

even though there are no observations on (L, T,, T5) in the sample. Since player
1 is certain that players 2 and 3 randomize independently, he treats the
observed correlation in the sample as a fluke.

9 Several readers have asked us the following questions: Won’t players update their beliefs in the
course of period-t play as they observe the actions of their opponents? And shouldn’t they therefore
deviate from the original play of r,(y;)? The answers are that yes, players will update their beliefs in
the course of period-t play, but that the optimal plan at the beginning of the period, r(y,), already
takes this revision into account. Intuitively, player i can foresee what his posterior beliefs will be at
every information set, and his optimal plan will thus maximize his expected utility at each
information set, conditional on that information set being reached. (Remember that r(y,) is a
strategy for the extensive-form game, that is, it specifies a feasible action at every information set. It
does not specify the “same” action at every information set; indeed by definition an action that is
feasible at one information set cannot be feasible at another.)
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(15,-1) (0,-10) (5,0) (6,1)
FiGure 1

5. ACTIVE LEARNING AND NASH EQUILIBRIUM

Our goal is to show that if players are patient as well as long lived then steady
states approximate play in a Nash equilibrium. Theorem 5.1 establishes this for
the case where lifetimes T go to infinity “more quickly”’ than the discount factor
tends to 1. We do not know whether the conclusion of the theorem holds for the
other order of limits. We indicate below in the discussion of Lemma 5.2 why our
approach cannot handle situations where 8 equals one.

TueorEM 5.1: For any fixed nondoctrinaire priors g there is a function T(8)
such that if 8, — 1 and T, > T(3,), every sequence of steady states 8™ has an
accumulation point 0, and every accumulation point is a Nash equilibrium.

An accumulation point exists by compactness; the interesting part of the
theorem is that the accumulation points are Nash equilibria. The idea of the
proof is simply that players do enough experimentation to learn the true best
responses to the steady state. The obvious argument is that if a player is very
patient, and a strategy has some probability of being the best response, the
player ought to try it and see. However, the simple example in Figure 1 shows a
complication. Even a very patient player may find it optimal never to experi-
ment with certain strategies. Moreover, these unused strategies need not be
dominated strategies in the stage game. In the game of Figure 1, if player 1
assigns a low probability to player 2 playing L,, his current period’s expected
payoff is maximized by playing L,. Now, if player 1 is patient, he may be willing
to incur a short-run cost to obtain information about player 2’s play, but given
player 1’s beliefs, the lowest-cost way of obtaining this information is by playing
R,, and player 1 may never play M,."° Since not all experiments need be made,
our proof will use a more indirect approach.

10 A5 an aside, we note that this example also shows why our learning model does not yield
results in the spirit of forward induction (Kohlberg and Mertens (1986)). Forward induction
interprets all deviations from the path of play as attempts to gain in the current round. Since L,
strictly dominates R;, forward induction argues that player 2 will believe that player 1 has played
M, whenever player 2’s information set is reached, and hence that player 2 will play L,; this will
lead player 1 to play M;. In contrast, in our model player 1 deviated from L; to gain information
that will help him in future rounds, and the cheapest way to do this is to play R;. When R, is more
likely than M, R, is optimal for player 2.



STEADY STATE LEARNING 557

Very briefly, our proof derives both upper bounds and lower bounds on the
players’ option values, that is, the difference between their expected payoff in
the current round and their expected average present value. We argue that if s,
has positive probability in the limit, most players using s; do not expect to learn
much more about its consequences, and play s; because it maximizes their
current payoff. For these players the option value of the game is low. However,
we also show that if s; is not a best response to the steady state distribution and
players are patient, then they are very unlikely to observe a sample that makes
their option value small, thus obtaining a contradiction. Intuitively, if some
strategy §; is a better response than s; to the steady state distribution 5,,—, and
player i’s beliefs assign nonnegligible probability to the opponents’ strategies
lying in a neighborhood of 6 _;, then player i should have a positive option value
from the possibility of playing §;, and this option value will be large if player i is
sufficiently patient. Moreover, since player i’s prior assigns positive probability
to all neighborhoods of 6 _ ;» repeated observations from the distribution gener-
ated by 5_,~ should be unlikely to substantially reduce the probability player i
assigns to neighborhoods of 6_;.

The proof of Theorem 5.1 uses five lemmas proven in Appendix B. Before
proving the theorem we first discuss the lemmas. Recall that s¥(y,) is the
optimal choice of strategy for a player with k£ periods of play remaining and
beliefs g,(- |y,).

LeEMMA 5.2: There exists a function n(n) =0 as n —  such that for all y,
and &

(5.2.1) max u,(s;ly;) — ui(sik( yi)lyi)

<VK(y) - ui(sik(yi)lyt)
<[8/(1-8)] max )ﬁ(xlyi)n(n(xlyi))

xeX(sk(y,)

The first inequality follows from the fact that, because it is possible to achieve
average payoff max u,(s;y;) by ignoring all subsequent observations and play-
ing the strategy that maximizes u,(s;ly,) for the remainder of the individual’s
lifetime, V*(y,) > max, u,(s,ly,).

To understand the second inequality, observe that V*(y,) —u,(s¥(y))ly,) is a
measure of the option value, or anticipated capital gain, to the information
generated by playing s*(y,). The second inequality asserts that as the total
number of observations on nodes that are reachable under sf(y;) becomes
large, when weighted by the empirical probability p that these nodes are
reached, the option value becomes small. The idea behind this conclusion is that
once a player has many observations of play at a given information set, another
observation will not change his beliefs about that information set very much, as
has been shown by Diaconis and Freedman (1990). (This relies on the assump-
tion of nondoctrinaire priors.) In the context of a simple multi-armed bandit
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FIGURE 2

model, their result implies that the option value of each arm is bounded by a
decreasing function of the number of times each arm has been played. The
reason that the third expression in (5.2.1) is more complicated than this is that
in our model players know the extensive form of the game. This means that they
may know that some large samples are not “representative,” and for these large
samples the option value may still be large.

As an example of this possibility, consider the game in Figure 2. In this game,
if player 1 plays D, then players 2 and 3 simultaneously choose between L and
R; player 4 only gets to move if players 2 and 3 both play R. Now suppose that
player 1 has played D 200 times, and that he has observed 100 draws of
(D, L, R), and 100 draws of (D, R, L). Then if his prior beliefs on IT, and I1,
are uniform, his posteriors will be concentrated in the neighborhood of players
2 and 3 each playing the strategy (1/2L,1/2R). Given these beliefs, player 1
believes there is a substantial (about 1/4) probability that playing D will lead to
player 4’s information set, so that information about player 4’s play is poten-
tially valuable, yet player 1 has not received any observations of player 4’s play.
The point is that because player 1 knows that players 2 and 3 play simultane-
ously, he treats the observed correlation in their play as a fluke.!!

Of course, if players 2 and 3 do choose their strategies independently, the sort
of spurious correlation in this example should be unlikely, so that most large
samples should lead to small option values. This is established by Corollary 5.5
below.

The final important remark about Lemma 5.2 is that it places weaker and
weaker bounds on the option value as § goes to 1, as a very patient player will
have gains from learning when faced with even a small amount of uncertainty.
This property is what has prevented us from extending our proof of Theorem
5.1 to limits where & goes to 1 faster than T goes to infinity.

Lemma 5.2 provides an upper bound on expected gains from learning about
the consequences of a strategy; the next lemma provides a lower bound.

11 Fudenberg and Kreps (1991, Ch. 9), develop a learning model in which players do not know the
extensive form of the game. We believe that Theorem 5.1 would extend to this context, but Theorem
6.1 (on self-confirming equilibrium) would not.
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Define

P(s;,4,y,) = max/; gi(m_ily,)dm_;

si M _jluls),m_Dzuls,m_)+A4}

to be the largest posterior probability (given the sample y,) that any strategy
yields a gain of A over s;. If this probability is large and the player is patient, the
option value ought to be large.

LemMmA 5.3: Forall 1>¢>0 and A >0, there are § <1 and K such that for
all 5 €[8,1) and for all k > K
Vik( vi) — ui(sik( Yi)lyi)
1-¢ '

(53.1) A-P(sE(y),4,y)—¢<

Now we turn to the issue of what fraction of the population has sampled
frequently enough to have discovered (approximately) the true distribution of
opponents’ play. Stating the desired result requires some additional notation.
Let m index a particular environment, characterized by a horizon 7,,, a plan r/"
for the ith kind of player, and the population fraction of opponents’ actions (7’1’,-.
From (3.7) we can calculate for population i the corresponding steady state
fractions 67" of players with different histories. Let ¥, CY; be a subset of the
histories for player i. We define

ezm{fz}= Z_ 0"(y:)
Y. €Y,

to be the steady state fraction of population i in category Y,. First we examine
the relationship between the probabilities of nodes as measured by maximum
likelihood, and the true population value.

LEMMA 5.4: For all € >0 and functions n such that n(n) — 0 as n — « there
is an N such that for all T,,, 07;, r[", and s,,

(5.4.1) 0,-’"{ maf)ﬁi(xlyi)n(n(xlyi)) > ¢, and n(s;ly;) >N} <e.
x€X(s;

This asserts that few people have a large sample on the strategy s;, few hits on
a reachable node, and a high maximum likelihood estimate of hitting it. Notice
the nature of the assertions: the fraction of the population that both have a
large sample and an unrepresentative one is small. It need not be true that of
those that have a large sample, most have a representative sample. Since the
sampling rule is endogenous, we must allow the possibility that sampling
continues only if the sample is unusual (e.g., keep flipping until tails have been
observed).

Our next step is to combine Lemmas 5.2 and 5.4 to conclude that players are
unlikely to repeatedly play a strategy solely for its option value. Intuitively, if
strategy s; has already been played many times, the player’s observations y;
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should have provided enough observations at the relevant nodes that the player
is unlikely to learn very much by playing s; again. As we explained earlier, the
reason this conclusion only holds for most large samples, as opposed to all of
them, is that since players know the extensive form of the game, they may know
that their sample is “unrepresentative” of the true distribution.

CoroLLARY 5.5: For all € > 0 there exists N such that for all T,, and all §,
67 (VA (vi) —usk(yly) > 8e/(1-8), n(sf()lyi) >N} <,

where k = T,, — t(y,) is the number of periods remaining given history y,.

Proor or CoroLLary: Observe that since Lemma 5.4 holds for each of
finitely many s,, it continues to hold (possibly for a different value of N) when s;
is a function of y,. Then substitute the second inequality of (5.2.1) into
inequality (5.4.1). QO.E.D.

This corollary shows that even very patient players will eventually exhaust the
option value of a strategy they have played many times; of course, the N
required to satisfy (5.5) may grow large as § — 1.

Our next lemma asserts that regardless of sample size, players are unlikely to
become convinced of “wrong” beliefs. Given A € H_; and a € A(h), we can
define 77_,(al6_,) to be the conditional probability that a is chosen, given that
h is reached, and p,(x|6_,) to be the probability of reaching node x. Define

Bi(67) = {w_i: l pi(z16™) —p(zlm_;)| <& forall z EZ}

to be the beliefs 7_, that yield approximately the same distribution over
terminal nodes as 6™,. Let

QE(B—llyl) ‘[Bf(a'f,»)gl(w_'lyl)dﬂ-_'
be the corresponding posterior probability, and let QI(6_;10) be the prior
probability. The result of Diaconis and Freedman mentioned earlier implies
that along any sample path, the posterior beliefs converge to a point mass on
the empirical distribution; the strong law of large numbers implies that players
are unlikely to have a sample that both reaches an information set many times
and gives misleading (that is, biased) information about play there. These two
facts underly the following lemma. Note well the order of quantifiers here: a
single y can be used for all samples y;, steady states 8™, and lifetimes 7,,.

LemMA 5.6: For all € >0 there exists a y> 0 such that for all y,, (7’:’,., r’,
and T,

67 {Qi(07i1y,) /Qu(87:10) < v} <e.
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Our last lemma asserts that if the population fraction playing a strategy is
positive, the population fraction that has played it a number of times must be
sizeable as well.

LEMMA 5.7: Let T, — « be the length of life, and 0™ be a subsequence of
steady states that converge to 0, and let r" be the corresponding rules. If
0,(s) >0,

(57.1) 67{n(s:ly;) >N and r(y,) =5} > 07" (s:) — (N/T,,).

With these lemmas in hand, we can now prove Theorem 5.1: Any limit point
0 of steady states is a Nash equilibrium. Here is a rough sketch of the proof: If ]
is not a Nash equilibrium, then some player i must be able to gain at least
34 >0 by not playing some strategy s; that 6 assigns positive probability. If
player i’s beliefs assign probability close to 1 to a neighborhood of 6, he would
assign a nonnegligible probability to the event that his opponents’ strategies are
such that he could gain at least 4 by deviating; call this event E. Now player i’s
prior beliefs are nondoctrinaire, and hence assign a nonzero probability to E,
and from Lemma 5.6, for most samples player i’s posterior does not assign E a
vanishingly small weight. For all such samples, Lemma 5.3 implies that player i’s
expected gain from learning is not negligible provided his discount factor is
sufficiently high and he has sufficiently many periods of life remaining.

However, since 5(si) is positive, Lemma 5.7 implies that a nonnegligible
fraction of the player i’s have played s; many times and intend to play it again.
From Corollary 5.5, if & is large, most of these players must have negligible
expected gains from learning about s;, which contradicts the conclusion of the
last paragraph that player i is unlikely to have samples that give him a negligible
gain from learning.

Proor oF THEOREM 5.1: We will first show that for each 4 >0 there is a
function T(8, A) such that if §,, —» 1 and T,,, > T(8,,, 4) any accumulation point
8 of the steady states 8 has the property that no player can gain more than 34
by deviating from 5,.. That is, for all players i, all s; € support(@i) and all s,
us;,0_)>u(s,0_)—3A. The existence of the desired function 7(8) will
follow by choosing A(8) > 0 as 6 — 1.

Thus, we fix a A >0 and a sequence of positive numbers ¢,, — 0, and let
k(e,,, A) satisfy the conditions of Lemma 5.3 for £ =¢,, and A. Let N(3) satisfy
the conditions of Corollary 5.5 for & and &' = (1 — 8)?/8, so that
(5.1.1) eim{Vik(yi) —u(sF(y)lyv:) > (1-9), n(sE(y)ly;) > N(é)}

<(1-8)°/s.
Finally, choose T(,,, 8, A) = [k(e,,, A) + N(8)] /(1 - 8).

Extracting a subsequence if necessary, we suppose that 6 is a limit of steady
_ states 8™ for (8,,,T,,), with §,, — 1 and T,, > T(e,,,5,,, A). We claim that no
player can gain more than 34 in a single period by playing any s;. If this claim is
false, then for m sufficiently large there is an s; and s; with s; € support((;i)
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such that u,(s}, 8™,) > u,(s;,0™) + 2A. It follows that for all sufficiently large m
and all sufficiently small £ > 0, any profile for i’s opponents that is within & of
(3’1‘,~ gives a gain of at least A from playing s; instead of s;. Thus for any sample
y;, the maximized probability P(s;, 4, y;) that some deviation from s; yields a
gain of at least A is at least the posterior probability Q(6™;ly,) that player i
assigns to profiles in the set BX(™,). From Lemma 5.6, and the fact that
6,(s;) > 0, there is a y > 0 such that for all 7,, and 6™,

9{"{Q£(6T,’|y,‘)/Qé(§Ti|0) < ’Y} <6,(s)) /4

This shows that not too many player i’s can have observed samples that have
caused them to substantially lower the probability they assign to an e-neighbor-
hood of the true steady state. Moreover, Q(6”,/0) > Q > 0 since the prior is
uniformly bounded away from zero by our assumption of nondoctrinaire priors.
Using this fact and our earlier observation that P(s;, 4,y,) > Q:(6™;ly,), we
have

(5.1.2) 0{"{P(s,~,A,y,~) <7Q} <0,(s,)/4, so that

0{"{P(si,A, yi) > 72} >1-6,(s;)/4

Inequality (5.1.2) gives us a lower bound on the fraction of player i’s who
assign a nonnegligible probability to any strategy yielding a A improvement over
s;. Our next steps are to argue that (i) since s; has positive probability in the
limit, there must be a nonnegligible proportion of the population that has
played s; many times, intends to play it again, and assigns a nonnegligible
probability to any strategy improving on s;, and (ii) there must therefore be a
nonnegligible proportion of the players that plays s; even though it has played it
many times before and has a nonnegligible expected gain from learning. This
last conclusion will then be shown to contradict (5.1.1). _

To carry out this program, use Lemma 5.7 and the facts that 8/"(s,) > 0,(s,) /2
and N(5,)/T, <N(,)/T(¢,,$s,,A)<1-28,, to conclude

(5.13) 07 {n(s,ly;) > N(8,,), sf(3:) =51} > 8,(5:) /2= (1=8,,).

From DeMorgan’s law, the probability of the intersection of the events in (5.1.2)
and (5.1.3) is at least the sum of the individual probabilities minus 1, so that

(5.1.4) 0{"{P(s[,A, y:) >vQ, n(s;ly;) > N(8,.), s£ () =si>

>0,(5,)/4— (1-8,).

By construction, 1 — k(e,,,4) /T, > 1 —k(e,,,A)/T(e,,,5,,,4) =8, i.e., at least
a §,, fraction of the player i’s have at least k periods of life remaining (since
each generation is of the same size). From Lemma 5.3, when §,, is sufficiently
large, the expected gains to learning of all players who have at least k periods
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of life are bounded below by a function of A - P; substituting this function into
(5.1.4) and using DeMorgan’s law again yields

(5:1.5)  o7{[Vi*(3) —u(sE()lvi) = (4¥Q —&,)(1 — &,,)],

n(sly) > N(8,), sE(9) =51} 2 8,(5,) /4= (1= 8,,).

If we now choose m large enough that (1-34,) <(4yQ —¢,X1 —¢,) and
0.(s)/4—-(1-6,)>1-35,)*/8,, we conclude that -

Gim{[Vik(yi) - ui(sik(yi)lyi) > (1 _Sm)] )
n(sly;) > N(8,,), s£(v;) =Si} >(1- 5m)2/5ma

which contradicts (5.1.1) because the event in this display implies the event
whose probability is bounded in (5.1.1). Q.E.D.

6. CONCLUSION

We conclude by examining the scope of Theorem 5.1. Can every Nash
equilibrium of every finite game be realized as a limit of steady states as 7 — «
and 8 — 1? Is it really necessary for 6 — 1 to achieve Nash equilibrium in the
limit as 7 — «?

Concerning the issue of which Nash equilibria can be obtained as limits of
steady states,. we do not have a complete answer. It is easy to see that limits of
steady states can be mixed as well as pure strategy equilibria. Since any limit
point must be a Nash equilibrium, this must be the case in any game that does
not have a pure strategy equilibrium. However, whether as T - o and § — 1 it
is actually possible to attain some refinement of Nash equilibrium must await
further research.

If T is not large, players do not have much data, and play may be quite
arbitrary and heavily influenced by priors. What if T'— o, but 8 is not close to
one? In this case players will have a great deal of information about those
strategies they have chosen to play, but players may not have much incentive to
invest in exploring many strategies. Consequently, play may fail to be Nash
because untested beliefs about opponents’ play off the equilibrium path are not
correct.

To see that for § » 1 a sequence of steady states may fail to converge to Nash
equilibrium, we consider an example due to Fudenberg and Kreps (1991).
Consider the 3-person game shown in Figure 3. Suppose that the prior of player
1 is that player 3 will play R with very high probability (> 2/3), while that of
player 2 is that 3 will play L with very high probability. If 6 = 0, or is very small,
consider a candidate for a steady state in which all player 1’s always play 4, and
all player 2’s always play A,. This is optimal in the first period of life given the
priors and low discount factor, and as a result no information about player 3 is
gained, and the proposed play is again optimal in the second period of life and
so forth. Consequently, regardless of T this constitutes a steady state. On the
other hand, in any Nash equilibrium either 1 must play D, or 2 must play D,.
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FiGURE 3

We conclude with a brief examination of the consequences of the fact that as
T — « players must have a great deal of information about those strategies they
have chosen to play. Formally, let H(o) be the information sets reached with
positive probability when the mixed strategy profile o is played, let Alo) =
U{A(h)|h € H(g)} be the actions at those information sets, and let X(o) =
U{xlx € h, h € H(o)} be the corresponding nodes. Let (- [0 _,) be the behav-
ior strategy for i’s opponents that corresponds to o _;. Let us say that the beliefs
w; (over m_;) are confirmed for s; and o_; if

_max f”’"’—i(“) - W—i(“"’—i)"ﬂi@’”—i) =0,
ac€A_(s;,0_)
that is, u; puts probability one on the same play of opponents as does o_; at
those information sets that are reached when (s;, o_;) is played. This captures
the idea that untested beliefs about opponents’ play off of the equilibrium path
can be incorrect.

THEOREM 6.1: For fixed nondoctrinaire priors g and 8 <1 as T,, — « every
sequence 0™ of steady states has an accumulation point 0; if 0,(s;) > 0 there exist
beliefs ; that are confirmed for s; and 6 _; and such that s; maximizes u(- ;).

Remark: This notion of equilibrium is equivalent to the self-confirming
equilibrium defined and characterized in Fudenberg and Levine (1993).

The idea of the proof should already be clear from our discussion of the proof
of Theorem 5.1: Long-lived players will eventually stop experimenting and play
to maximize their current expected payoff given their beliefs, and their beliefs
about the payoff from any strategy they play many times are approximately
correct. The formal proof is in Appendix C.

Dept. of Economics, M.I.T., Cambridge, MA 02138, U.S.A.

and
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APPENDIX A

Lemma Al: Ifx;, y,€ER,

ﬁxr— l_nIYi < i (ﬁyj)lxi—yil( l_nllxj);

i=1 i=1 i=1\Jj=1 j=1+
soifx; <1
n n n i—1
| JEZ vil< XA Ty Jlxi=wil.
i=1 i=1 i=1\Jj=
PrOOF:
n n
nxt_l_[yi
i=1 i=1

n n n n

vl lxi=TTvi+ [Tx-vI1x
i=2 i=1 i=1 i=2

n n n

l_Ixi_ nyl +I—[xi|x1_Y1|

i=2 i=2 i=2

n n

nxi_ nyi

i=3 i=3

< i(ﬁx)lxi-yil( In] x,-)- Q.E.D.

<Y

n n
+YIHxi|x2_Y2| + l—Ilexl _)’1|
i=3 i=2

<Y1Y2

i=1\j=1 j=i+1

LemMa A.2: Suppose that A(arly) is a likelihood function for  given a sample y, that g%r) and
hO(w) are two prior densities both of which are bounded above by g and bounded below by g > 0. If
g(wly) and h(w|y) are the corresponding posterior densities, either g(m|y) =h(wly)=0 or ~

g(mly)
h(mly)

Proor: Proceeds via the calculations
g(mly) _ AMly)g®(m)  JA(mly)h®(m)dm
h(rly) ~ A(wly)e®(m)dm  A(wly)h°(r)
_8'(m) [1 . A(rly)(hO(m) — g°()) dw]

<(2/8)"

"~ hO(w) A(mly)g(m) dr

_ [z-g]/a(nly)dm
< (g/g)[l M v ]

= (§/§)2 Q.E.D.
APPENDIX B

We begin the proof of the various lemmas by demonstrating the basic fact that in large samples
the posterior is uniformly close to the empirical distribution: this is used in several places below.

LemMa B.1: For all nondoctrinaire priors g; there is a nonincreasing function n(n) >0 asn—-w
such that for all samples y;, information sets h, actions a € A(h), strategies s;, and terminal nodes
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z € Z(sy),
(B.1.1) f” p(zlm_;) _ﬁi(z|yi)”8t(“—i|yt') dm_;

< max)ﬁ,-(xly,-)n(n(xly,-)), and

x€X(s;

(B.12) f"“’—i(a) - ’ﬁ'i—i(“ ) ||g,~(1'r,,~|y,-) dm_; < n(n(hlyl)).

Remark: Diaconis and Freedman (1990) show that for all samples, Bayes estimates of multino-
mial probabilities converge to the sample average at a rate that is independent of the particular
sample so long as the prior assigns strictly positive density to all distributions. One complication in
our model is that even if strategy s; has been played many times, there may be information sets A
that are reachable under s; but have not been reached in the sample. A related complication is
caused by the fact that the distribution on terminal nodes generated by the sample average
strategies 7 does not equal the sample average on the terminal nodes. This explains the compli-
cated form of the right-hand side of (B.1.1).

Proor: Fix a strategy s; and terminal node z € Z(s;). Let {a_;(/, 2)}}= | be the actions by other
players (including nature) that lead to z, and let x(1) through x(L) be the nodes where those
actions are taken. It follows from (2.1) and Lemma A.1 in Appendix A that

(B.1.3) ||I7i(z|77'—i) _ﬁi(zh’t)"
L
< /Z ﬁi(x(l)wi)ll’”—i(“—i(l’ z)) - 7L (a_i(l, z)Iyi)||.
=1

For each h € H_, and & < 1/#A(h) let B! be the sphere in A(A(h)) of radius ¢ in the sup norm
centered at #* ,(h), and let IT ~h be the set of behavior strategies for information sets other than 4.
Since |7_(a) — #_ (aly;)| <e on the set B! X IT™" for all a € A(h),

B.14)  [ll7_i(a) = #Li(aly) g:(m_ily) dm_,;

<e+ [, o g(mbn)dr

Suppose first that §,° is a nondoctrinaire prior for which 7 _,(h) is independent of = _,(h'), h # k.
Then the corresponding posterior g; consists of a product g; = th’i" where g is a multinomial.
Diaconis and Freedman (1990) show that for a multinomial, if £ < 1/#A(h) the posterior odds ratio

f~Bh§;’(W—i(h)|}’t) d“—i(h)/thgih(ﬂ'—i(h)lyi) d”r—i(h)

goes to zero as the sample size n,(hly;) = « at an exponential rate that is independent of the

particular sample. Since the multinomials are independent, the posterior odds ratio studied by
Diaconis and Freedman equals

f~Bg'><n—"§i(7T—i|)’1)d7T—i

fB;'xn—"gi(W—iU’i) dm_;

Now consider an arbitrary strictly positive prior gio‘ Since both gio and g,-“ are bounded above

and below, we can conclude from Lemma A.2 that there is a constant k > 1 such that for all y; and
1Ti,

=L,(B!ly,).

&i(m_ily;)/k <gi(m_ily;) <kg;(m_;ly;).
Thus,

J~ Bg‘xn—hgi(“—i|y5)d"t

Jprxm-+8(m_ily;) dm_;
and hence goes to zero at the same exponential rate. In particular, for all € >0 there is an
1°(n) - 0 such that (B.1.4) is less than &+ n°(n(k|y;))/L. Choose N, so that n'/‘(n)< 1/t for

n>N,. Then n(n) =n'/!(n) for N+ --+ +N,_; <n <Ny +N,+ - +N, satisfies n(n) - 0 and
(B.1.4) less than n(n(kly,))/L. We conclude from (B.1.4) that (B.1.2) is valid.

<k?L;(B!ly,),
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Now we combine (B.1.2) with (B.1.3) to obtain (B.1.1): Let A(/) be the information set containing
x(1), and note that n(A())|y,) > n(x())|y,). Then

(B.1.5) f“ pi(zlm_;) = Bi(zly;) ||g;(7"—t|yt) dm_;

< X B(x(Dly)n(n(h(Dly,) /L)
I=1

< max p(xly)n(n(xly)). Q.E.D.
xeX(s,)

LemMma 5.2: There exists a function n(n) — 0 such that for all y, and §
(52.1) max u;(s;1y;) "ui(stk(yi)b’t)
sl

<V¥E) —ui(sf(ly)
<[6/(1-8)] max ﬁ(xly,-)n(n(xly,-)).
xeX(sk(y)

ey,

Proor: The first inequality follows from the fact that u,(s;ly,) < ¥;*(y,) since playing s; for the
rest of the game is feasible and yields u,(s;|y,) in expected value each period.

To demonstrate the second inequality, observe that because the V;"’s are average payoffs
V*k=1(y,) < V;¥(y,). 1t follows from the Bellman equation (4.3) that

(R BIACARY(! _¢k)"i(sik(yi)|yt)
+r Y Pi(z)[Vtkﬁl(yt’z)_V}k‘l()’t)],
zeZ(s,)
or since ¢, <9,
VE) <u(skEOly) +8/(1=8) X p()[VE (v 2) =V (0]
zeZ(s,)

The final sum represents the expected value of new information. Note that V,*(y,) = V;*(g,( ly,));
that is, the value function depends only on the current beliefs about 7r_;. Consequently, the value of
new information should be small if the expected change in beliefs is small. To make this idea
precise, we introduce the /; norm on densities llg; — g;ll = [llg,(m_) — g;(w _Jll dm_,. It is stan-
dard that V;*(g,) is Lipshitz in g; with Lipshitz constant U equal to the largest difference in any two
payoffs. Consequently

Z Pi(z)[Vzk_l(yna) - Vik_l(yi)]

zeZ(s,)

<U Z (DN e.(1(y,2)) - &( lyi)"l'

zeZ(s)
We may then calculate

pi(zly)ll&. (- 103, 2)) =& 1)) s
=p.(zv) [l 221w ) 8i(m_ilv)) /p(21v) ] = g i) [ dr

= f” pi(zlm_;) _pi(zlyi)”gt('”'—ilyi) dm_,
< f" pi(zlm_;) _ﬁt(zlyi)||gi(77'—i|)’i) dm_;
"’f” p,.(zly;) _pi(Z|Yt)||gi(7T—i|yi) dm_;

< 2[” pi(zlm_;) _ﬁi(z|yi)”gt(7"—i|yt) dm_;,



568 D. FUDENBERG AND D. K. LEVINE

where the last inequality follows from

pi(zly;) = fl’i(zh"—i)gi(‘”—ib’i) dm_;.

We can now take 7 to be the function whose existence is proved in Lemma B.1, multiplied by the
constant 2U(#2Z). Q.E.D.

LemMa 5.3: Forall 1>&>0 and A > 0, there are § < 1 and K such that for all § €[§,1) and for
allk>K

VE() - u(sE(y)ly:)

1—-¢

(531)  A-P(sk(v),4, %) —e<

Proor: Let U be the largest absolute payoff. From classical statistics, for all £ and A there exists
at and a t-period test procedure for the hypothesis 7_; € {m_;lu(s;, 7 _) > u,(sk(y,),7_) + 4}
such that the type I and type II errors are less than ¢/2U for all steady states 0 _;- Consider the
policy of first running this test, and then playing s; for the remaining k — ¢ periods if the hypothesis
is accepted and playing s*(y,) otherwise. For notational convenience, let (¢, k) =(8° —8%)/(1 -
5%) be the weight placed on the last k — ¢ periods. Then the hypothesis-testing policy yields a utility
of at least

(532) - (1-(t,k))T+4(t,k)
[ui(sz'k(yi)7yl') + (1 _8/2(_])4 'P(sik()’i)’A’yi) _5/2] < Vik(yi)

since the hypothesis-testing value cannot exceed the value of the optimal policy.
Rearranging terms and using ¢(¢,k) <1, 1 —e < 1, we find that

(533)  AP(sk(y),4,) <1[[d(t,k)(1-2/20)]
[(1 =81, k0) T~ §(t, kYu(sE(v), 31) +e/2+ VE)]

B (1-¢(t,k))T+e/2 . 1
d(t,k)(1-e/20)  1-(e/20)

Since as 6§ —» 1, <5(t, k) — 1, we can choose § and K such that for each § €[§,1) the conclusion of
the lemma follows. Q.E.D.

[VE) = u(skOoly)]-

We turn now to sampling theory: what fraction of the population can have such a badly biased
sample that maximum likelihood estimation yields a poor estimate of the true steady state values?

LeEmMa B.2: For all € >0 and n(n) > 0 as n — o, there is an N for all 8™, rl", s;, and T,, such
that if h€ H_;, a € A(h), then

B21)  or{|# . (aly,) -7 _,(alg™)|> e, and n(hly;) >N} <e.
If x € X(s;),
(B.2.2) 0,-’"{n(x|y,—) < [ﬁi(xlg’fi) - s] n(s;1y;), and n(s;ly;) > N} <e,

(B.2.3) 0,-'"<max | B:(x1y:) -pi(x187)) | > €, and n(s;ly;) >N} <e, and
X

(B.2.4) Gf”{maxﬁi(xlg'f,-)n(n(xlyi)) > ¢, and n(s;ly;) >N} <e.
X

The first statement says that the population fraction having both a badly biased sample on
a € A(h) and a large number of observations on /4 is uniformly small regardless of 6”;. The second
says that the population fraction that has both played a strategy making x likely many times, and
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has seen x only rarely is uniformly small regardless of 8™, Notice what is asserted: the fraction
both with a large sample and a biased sample is small. It need not be true that of those who have a
large sample most have an unbiased sample.

Proor oF LEMMA B.2: Since each period’s actions are i.i.d., we can model the distribution on
opponents’ actions faced by player i by a probability space whose elements are what he will see the
kth time he arrives at information set 4.> The Glivenko-Cantelli Theorem shows that the empirical
distribution at each information set & converges to the distribution induced by 6”; as the number of
observations n(h|y;) - =, at a rate that holds uniformly over all values of 6”; and the finite number
of information sets. It remains to explain why the rate is uniform over all “sampling rules” r,(y;).
This follows from the fact that the desired inequalities hold even if player i is informed of the entire
sample path of each information set before choosing his rule: Through such anticipatory sampling
he may be able to ensure that most of the long samples are biased, but since there are few paths
where the empirical distribution is not close to the theoretical one after N samples, there is no
sampling rule for which the probability of long and biased samples is large.

A similar argument yields (B.2.2), except that now we use a probability space in which the
elements are what player i will see the kth time he plays strategy s;.

Next we turn to (B.2.3). By Lemma A.1 if {a_;(/, )}, are the moves by other players or nature
and x(1),..., x(L) are the nodes leading to x

B25) || 5(xlv) -5(x8m) ]|

Z (x(l)|0’")” Li(a_i(Lx)|y) - *rr,,(a,,(l x)|6 )”

J# (a0l =7 (a0 [)

min { 5,(x(/)|6"™;
where the last step follows from p;, 1r_i, 7_; < 1. From (B.2.5) it follows that if
(B.2.6) max || 5,(xly;) -p,(x]6™) |>¢ occurs,

xeX(s)

~

N
||[\1[~ T

min {[),—(x|§'f,), I'ﬁi_[(a ly;) - 7_r,,-(a|(7’f,) "} >g/L
for some x € X(s,) and a € A(h) with x € h. Consequently, if we can show how to find N for each
such x and a so that

(B.2.7) Gf"{ﬁi(xla’fi) >e/L, I'ﬁi,,-(aly,) —Tr_,»(u|§’fi) ” >2¢e/3L, n(s,ly,) >N} <e,

then (B.2.3) will follow from (B.2.6).

Choose N, so that (B.2.1) holds for 2¢ /3L, and choose N so that (B.2.2) holds for ¢ /3L and so
that N>3LN,/2¢. If x€h, n(hly,) > n(xl|y;). Suppose p(x|8™;)>e/L. We now use (B.2.2),
recalling that & has been replaced with ¢ /3L. We may substitute n(k|y,) for n(x|y;) and ¢/L for
P(x|8™,) while maintaining the final inequality. Also (B.2.2) presumes n(s;|y;) > N; combining with
N>3LN,/2¢e, we get

(B2.8)  6"{n(hly;) <N;and n(s,ly,) >N} <e/3L.

On the other hand by (B.2.1)

(B29)  or{|#.(aly,) —7/"(al6™,)|>2e/3L and n(hly,) > Ni} <2¢/3L.
Combining the events in (B.2.8) and (B.2.9) we get

(82.10)  o7'{|#%(aly,) — " (ald™)|> 2¢/3L, n(s,ly,) >N} <e/L <e
whenever I)i(xlé _;))>¢&/L, which proves (B.2.7), and consequently (B.2.3).

12 The more obvious probability space would have elements corresponding to what player i
would see if he plays s, in period ¢ for each date ¢ of his life. Then, for each sample path, the
realized terminal node the player sees the first time he plays s; depends on the period in which the
strategy is first used. Our alternative generates the same probability distribution over observations.
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To show (B.2.4) we proceed as in (B.2.5): If p(x|6™,)n <e/2 we are done. Let N; be large
enough that n(n) <e/2 for n > Ni; then choose N so that (B.2.2) holds for ¢’ <&/27 such that
(/2 —€)N=N,. Q.E.D.

Our next step is to argue that the players are unlikely to have a large but inaccurate sample, so
that they are unlikely to be confident of an incorrect forecast. We wish this to be true uniformly over
the population fractions 6", which will follow from the uniform version of the strong law of large
numbers, that is, the Glivenko-Cantelli Theorem. .

Recall that 6/(Y;) is the steady state fraction of population i whose histories y; lie in Y,. Because
our aggregate system is deterministic, 6;"(Y;) is equal to the expected frequency with which the
“old” (age T,,) players encounter events in Y;. In particular, for a set Y; that consists of all
subhistories of a set of terminal histories (i.e., histories of length 7},,) and for a particular terminal
history y/”, define J(y/",Y;) to be the number of times that a subhistory of y,” lies in Y;. Then we
have

B4 (V)= X I(ymY)er(or).
yrey,
so that to bound the population fractions, it suffices to bound the probabilities of the corresponding
length-T,,, histories.
Our goal is to relate 6" representing the population fractions with each experience to the
fractions p; that determine the probability distributions over observations.

m

LemMa 5.4: For all € >0 and 1(n) - 0 as n — o there is an N such that for all T, 8™, rl",
and s;,

0{"{ max ﬁi(xlyi)n(n(xlyi))>e,andn(s,-|y,-)>N}se.
xeX(s;)

Proor: Letting 7 = sup,, n(n) by (B.2.3) we may choose N large enough that
6,-’"{ max ” B.(xly;) —pi(x|6™;) ”17 >e¢/2and n(s,ly,) >N} <e/2
xeX(s,)
so that the conclusion follows from (B.2.4). Q.E.D.

LEMMA 5.6: For all £ > 0 there exists a y > 0 such that for all y;, 8™, r", and T,
o7 {QL(8m]v:) [Qi(7{0) <v} <e.

m

Proor: Fix g? and ¢ and let B =Bi(8",). We must find vy so that regardless of y,, 8™, r/",
and T,,

I <Y} <E.
' Jp&/(m_;)dm_, }

Since g,-0 is bounded away from 0, and ¢ is fixed, it suffices to find a y' so that
9{"{&81("—.‘“’.‘) dm_; <’Y'> SE.

Recall that B = {r_,Imax, | p(z16_;) — p(z|m_)l < ). By (B.1.1) of Lemma B.1, Lemma 5.4, and
#Z > 1, we may find an N so that

9;"{j|| Bi(218_,) —pi(zlm_)||gi(m_ily,) dm_; > 2e#Z/3, n(s;ly;) > N} <e/#Z.

0’"{ Jp&i(m_ily;) dm_;

Making use of the fact that Pr(max, X, > x) < #Z max Pr(X, > x), it follows that

0{"<fmax || pi(z16_;) —p,-(zlq-r_,-)"g,-(ﬁ_ily,) dm_;>2¢e/3, n(s;ly,) >N> <Ee.
z
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Now I = fmax, |p(z16_) — p,(z|m_lig,(_;y;) dm_; may be written as the sum of integrals over
B and ~ B, so in particular I > 2¢/3 if

€f~3g,~(77_,-|y,-) dm_,>2e/3.

Since [g(m_;ly)dm_;=1, I>2¢e/3 also follows from [pg(m_;|ly;)dm_;<1/3. We conclude
9:"{[ g,(m_ily;)dm_; <173, n(s;ly,) 2N} <&
B
If we take y"=min{1/3, ming, .1y <y [p&(T i1y dm_},

Gf"{j;gl(#_ily,)d'rr;, <7’} <E. QED

LeEmMA 5.7: Let T,, — « be a sequence of lifetimes, and 0" be a subsequence of steady states that
converge to 0, and let r/" be the corresponding rules. If 6,(s,) > 0, then

(5.7.1) 0r{n(s,ly;)) >Nand r"(y,) =s;} > 0/"(s;) — (N/T,,).

Proor: Since 8,(s;) > 0 there exists an & > 0 and 7 such that 8"(s,) > 2¢ for all m > 7. Now fix
N. For any history y,, there are at most N subhistories y, for which r/"(y}) =s;, and n(s;ly;) <N.
Since 6/"(y;) <1/T,, equation (B.4) shows that

(572)  om{n(sly,) <Nand r"(y,)=s} <N/T,,.
Since 8™(s;) is the sum of the fractions playing s, with n(s,]y,) <N and those playing s; with
n(s,ly;) > N, (5.7.1) follows. .E.D.

The following lemma is used in Appendix C:

Lemma B.3: For all € >0 there is an N such that, for all T,,, 8", r", and s;, if he H_, and
a € A(h),

0,-'"<f||1r_,(a) ~m_i(alb_;) llg:(r_ily;) dr_; > & and n(hly;) >N} <e.

Proor: This combines B.2.1 from Lemma B.2 with B.1.2 from Lemma B.1. Q.E.D.

APPENDIX C

THEOREM 6.1: For fixed nondoctrinaire priors g,Q and 8 <1 as T,, — « every sequence 8™ of steady
states has an accumulation point 0; if 6,(s;) > 0 there exist beliefs ., that are confirmed for s; and 6 _;
and such that s; maximizes u (- |u,).

ProoF oF THEOREM 6.1: Let 8™ be a subsequence of steady states that converge to 6, and let r"
be the corresponding optimal rules. Suppose 6,(s;) > 0.

We will say that s; is a e-static best response to marginal beliefs p; if, for all s,

u,(8; ;) + & > u;(si, p;)-

Fix e. Fix n(n) so that Lemma 5.2 holds and let N be large enough that Lemma 5.4 holds as well.
By Lemma 5.2 and the fact that /" is optimal

(6.1.1) 0r{r"(y;) =s;,s; is not a 2- #Z(s;)Ue /(1 — §)-static best response
to p;(*1y;), and n(s;ly;) > N} <e.
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Let X_,(s;) be the nodes hit (in the limit) with positive probability when s; is played:
X_i(s)= {X(s,0_)). Let p= ming , cx_(,) P(x18_,). We may assume m is large enough that

p(x18™)>p/2 for xeX_(s) and |l7_(al6™,) - m_[ald_)l <e. Note that for x € b, n(hly,) >
n(xly;). Consequently, by (5.4.1) of Lemma 5.4, for any § we may find an N so that

(6.1.2) 0,-"'{ max  n(n(hly;)) >2/p, and n(s,lyi)>N}<e.
heH_,nH(s,,6_)

We may take N large enough to satisfy the conclusion of Lemma B.3.

(6.1.3) 6,-’"{“61}1717((3’)[”17'_,-((1) -7_;j(alf_)) ||g,~(7r,i|y,) dmw_;>3e,

and n(s;ly;) > N} <2e.

Since 6,(s;)> 0, choosing m large enough that N/T,, <&'/2 and (6(s,) — 6"(s)) <&'/2, it
follows from Lemma 5.7 that

(6.1.4)  07{n(s;ly;)) >Nand r/"(y;,)=5;} > ¢
Combining (6.1.1) through (6.1.4) yields

(6.1.5) 0{"{ri"‘(yi) =s;, 5; is a static 2#ZUe /(1 — &) best-response to p,(- y;),

max f”'n-_,-(a) —7r_,-(a|5_,») ||gi(1r_,~|y) dm_; <3¢ and n(s;ly;) >N}

acA_[(s)
>¢€' —3e.

If we take 3¢ <¢’, we conclude that there is a y; such that s; is a 2#Z(s;)Ue /(1 — 8) best response
to p,(- |g:(- lyf)) with

aEI;_l?((s,) f”'rr_,»(a) —-m_i(a |§_i) ”gi('r_r_i|yf) dm_; < 3e.

Taking & — 0, we see that as a measure on 7 _;, g,( |yf) has a weak limit point w;. Then s; is a best
response to p,(-|u,), that is, maximizes u,(-,u;), and

max )/”'rr_i(a)—w_i(alg_i)llui(dw_,-)=0. Q.E.D.
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