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Abstract

We study models of learning in games where agents with limited memory use social infor-
mation to decide when and how to change their play. When agents only observe the aggregate
distribution of payoffs and only recall information from the last period, we show that aggregate
play comes close to Nash equilibrium behavior for (generic) games, and that pure equilibria are
generally more stable than mixed equilibria. When agents observe not only the payoff distribu-
tion of other agents but also the actions that led to those payoffs, and can remember this for
some time, the length of memory plays a key role. When agents’ memory is short, aggregate
play may not come close to Nash equilibrium, but it does so if the game satisfies a acyclicity
condition. When agents have sufficiently long memory their behavior comes close to Nash equi-
librium for generic games. However, unlike in the model where social information is solely about

how well other agents are doing, mixed equilibria can be favored over pure ones.
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1 Introduction

This paper develops and analyzes two models of learning in games based on social comparisons,
where agents have limited information and memory. We examine both a low information and a high
information model. We discuss the low information model first. Here, agents observe the highest
utility realized in their own population without observing the corresponding actions. If they are
getting close to the highest payoff in their population, then they are content, and continue to play
the same action. Otherwise, they become discontent and experiment at random with different
actions in hopes of doing better. Memory is limited in sense that agents do not remember all the
things that happened in the past, just whether they are content, and if so, what they did last
period.! In addition, the behavior we specify implicitly supposes that agents do not try influence
the future play of others; this “strategic myopia” makes the most sense when the population is
relatively large.

When people can observe the strategies that worked well for others, it seems natural to mimic
those strategies. When they do not observe each others’ strategies but can observe their payoffs,
people may experiment if they find they are doing less well than others. We are motivated by
the fact that, for example, individuals may learn from reading newspapers or watching television
which report aggregate data on the economy payoffs (stock index, average wages per industry, and
income distribution). This restricted form of information seems plausible in many real world social
interactions in which it is difficult for people to obtain detailed information about other people’s
behavior.? It is also of relevance to laboratory experiments on games with large extensive forms,
such as indefinitely repeated games: Here it is feasible to tell participants the payoffs that other
participants received in past plays of the repeated game, but not to tell them the exact strategies
used by the participants who obtained high payoffs.?

In addition to the random play of discontent agents, our low information model has three other
components that are also common to our high information model. First, with a probability that
we send to 0, content agents tremble and become discontent, which triggers a wide search on the
strategy space. Second, agents only reassess their play with a probability that is bounded away
from 1. Finally, we assume there is a small number of committed agents who play specific actions

regardless of what they observe so that no strategy ever vanishes from play. These assumptions

Tn a recent paper, Fudenberg and Peysakhovich (2014) find experimentally that last period experiences have
a larger impact on behavior than do earlier observations, and that individuals approach optimal strategies when
provided with summary statistics. For a discussion of recency effects in decision making experiments, see Erev and
Haruvy (2013). Recency effects have also been found in the field, for example, in the credit card market as in Agarwal
et al. (2008), in the stock market as in Malmendier and Nagel (2011), or in consumers’ choices made from a list as
in Feenberg et al. (2015).

20f course in some environments people have access to public records that aggregate information. However, many
institutions delete all records after a fixed period of time (due to storage costs or law), and record-keeping devices
depreciate.

3See for example the repeated prisoner’s dilemma experiments surveyed in Dal Bé and Fréchette (2016). In many
of these, a substantial minority of participants defects most or all of the time, and receive a much lower overall payoff
than subjects who appear to be “conditionally cooperative,” which raises the question of what would happened if
participants were told something about the payoffs that others have received in previous plays of the repeated game.



make the resulting system ergodic,* and in the limit as the probability of trembling goes to zero,
the system spends almost all of its time at states where all but the committed agents are getting
about the same payoff. Moreover, the presence of the committed agents means that every possible
action has positive probability, so in generic games these limit states must be approximate Nash
equilibria. The stochastically stable states, those that have non-vanishing frequency in the limit
as the probability of a “tremble shock” goes to 0, are those where the largest number of shocks is
required to lead the system to another equilibrium state; these numbers are called the “radii” of
the equilibria (Ellison (2000)). We find that while the radius of pure equilibria is generally large,
growing linearly with the size of the population, every mixed equilibrium has radius 1. We use this
to show that in large populations mixed equilibria are significantly less stable than any of the pure
equilibria, even pure strategy equilibria that are not stochastically stable, and even when the mixed
equilibrium gives the players a higher payoff in line with experimental evidence (see, for example,
Van Huyck et al. (1990)).5

Our high information model explores the effect of allowing the agents to use more information
and memory while still basing their decisions mainly on social information. It supposes that agents
observe the highest payoff realized in their own population together with the corresponding action,
and moreover that they recall the actions that were best responses in the last finite 7' periods.”
Since agents generally experiment less when they are more experienced we assume that discontent
agents randomize over the set of remembered best responses and last period action instead of
over all actions. If agents only recall best responses in the last period, we show that our social
learning process and the standard best response with inertia dynamic (Samuelson (1994)) predict
the same stochastically stable set. In particular both models can have stochastically stable cycles,
and we believe that it is more likely that that the system would be bogged down in a best response
cycle rather than moving to a mixed equilibrium in generic games.” However, having sufficiently
long memory in our learning process leads to stochastic stability of approximate Nash equilibria
in generic games, even games that have only mixed Nash equilibria, unlike the best response with
inertia dynamic. We highlight the role of memory by showing only Nash equilibria are stochastically
stable if agents have a memory at least k x [, when the game is k x [ acyclic, meaning that from
any strategy profile there is a best response path to a k x [ curb block (Basu and Weibull (1991)).
Because every game is acyclic for k and [ at least as large as the action spaces, this means that

stochastic stability is guaranteed in any game when memory is sufficiently long. Finally, we show

4This rules out the long-run effect of history or initial conditions epitomized in Schelling’s (1960) focal points,
which allows us to make predictions based solely on the payoff matrix of the game; we view this as an approximation
of social norms or conventions where payoff considerations are the most important forces.

5This is the first such result we know of for this sort of process. Fudenberg and Imhof (2006) characterize the
relative frequencies of various homogeneous steady states in a family of imitation processes, but the processes they
study can in some games spend most of their time near non-Nash states. Levine and Modica (2013) like us examine
the relative amount of time spent at different steady states corresponding to Nash equilibria but examine a dynamic
based on group conflict rather than driven by learning errors.

5In contrast, Young’s (1993) adaptive learning rule has one agent revising at a time that observes a sample of size
K from the last T periods and chooses among those actions that are best response to the empirical distribution of
actions in the sample.

"We are not aware of a general characterization for best response with inertia dynamics.



by example that in the high information case with long memory, mixed equilibria can be favored
over pure ones.

The main methodological contribution of the paper is to characterize the learning dynamics
combining the standard theory of perturbed Markov chains and the method of circuits (see Levine
and Modica (2016)), adapting their Theorem 9 to the case in which there is a single circuit. To
illustrate the complementarity between this approach and past work, we show how to find the
stochastically stable set by constructing circuits of circuits, and alternatively by using Ellison’s
(2000) radius-coradius theorem. Our results also contribute to the long-standing debate about pure
versus mixed equilibria, providing a clear connection between what players observe and equilibrium
selection. We show that, in large populations, pure equilibria are more stable in environments where
agents only know that there is a better response, but mixed equilibria are sometimes more stable

in environments where agents have enough information that they know the best response.

Related Literature

In addition to its focus on learning from summary statistics based on social information, this paper
contributes to the larger literature that uses non-equilibrium adaptive processes to understand
and predict which Nash equilibria are most likely to be observed. The literature on belief-based
learning models such as stochastic fictitious play (Fudenberg and Kreps (1993), Fudenberg and
Levine (1998), Benaim and Hirsch (1999), Hofbauer and Sandholm (2002)) concludes that stable
equilibria can be observed while unstable equilibria cannot be, but also concludes there can be stable
cycles. The same conclusion applies in the literature that studies deterministic best-response-like
procedures perturbed with small random shocks (Kandori et al. (1993), Young (1993), others),
although that literature, unlike the one on stochastic fictitious play, does sometimes provide a way
of selecting between strict equilibria; for example it selects the risk-dominant equilibrium in 2 x 2
coordination games, as does our social comparison dynamic. In larger coordination games, the two
dynamics can make different selections; we discuss this further in Section 7.

The idea that players observe outcomes and update play with probability less than 1 appears
in the Noldeke and Samuelson (1993) analysis of evolution in games of perfect information; our
model differs in that agents are able to observe the average payoff and/or action distribution not
the outcomes of all matches for the current round of play.® The ideas that agents only change
their actions if they are “dissatisfied” and/or that they have information about the distribution
of payoffs have also been explored in the literature; these papers (for example Bjornerstedt and
Weibull (1996), Binmore and Samuelson (1997)) have assumed that agents receive information
about the actions or strategies used by agents they have not themselves played. Our committed
agents resemble the “non-conventional” agents proposed by Myerson and Weibull (2015) in that

committed agents consider a (strict) subset of actions, however, we focus on committed agents with

8 As in our model, this stochastic observation technology means that every sequence of one-move-at-a-time inten-
tional adjustments has positive probability; they use this to show that if a single state is selected as noise goes to 0,
it must be a self-confirming equilibrium (Fudenberg and Levine (1993)).



singleton action sets.

A more recent literature has considered learning procedures that involve a substantial amount
of randomization when players are “dissatisfied.” These papers are oriented at determining when
all stochastically stable points are Nash equilibria.” By contrast we are focused on long-run com-
parative statics: we compare a range of different learning procedures to characterize which ones
lead to the stochastic stability of Nash equilibria in which types of games, and we also determine
the relative time spent at different steady states, for example, mixed versus pure. Building on
Young (2009), Pradelski and Young (2012) show that an efficient equilibrium is selected in games
with generic payoffs for which a pure Nash equilibrium exists. In contrast, we also consider generic
games with only mixed equilibria, and our procedure selects the risk dominant equilibrium in 2 x 2

coordination games, whereas their procedure does not.

2 Setup

Let G = ((u?, A7)j=1,2) be a finite two player normal-form game where A’ is the finite set of actions
for player j, v/ : A7 x A=7 — R is the utility function for player j, and u/(a’,a™7) is player j’s
utility when choosing action a’/ € A’ against the opponent playing a7 € A~7. For any finite set X,
we let A(X) denote the space of probability distributions over X. We extend v/ to mixed strategy
profiles a € A(A7) x A(A77) in the usual way.

Now we introduce a notion of (an approximate) pure strategy best response: for v > 0 we say
that a7 € A7 is a v-best response to a7 € A(A7) if w/(a/,a ) + v > uw/(a/,a7) for all € AJ.

We are interested in the game G played between two populations. There are N agents in each

population, indexed by i. Agent i of each population j chooses an action a € AJ. Agents are
matched round robin against each agent of the opposing population. Aggregate play in population

j can be represented by the mixed strategy o/ € A(A7), and o/(a’) can be interpreted as the

proportion of agents ¢ playing ag = a’. The utility of agent i is ug(ag,ofj ) since he plays each

opponent in the opposing population in turn.!? For any integer K and any set X let AX(X) be the
subset of A(X) where each coordinate is an integer multiple of 1/K. We will want to deal with the
population fractions playing different actions. We call AN (A7) the grid for population j; the grid
is the product space AN(A4) = AN(A!) x AN (A?%). We will also make use of the grids for subsets
of the population.

We make the following generic assumption about payoffs:
Assumption 1. (1) Each player j has a unique best response to every a3 € AN(A77).

(2) No player has a single strategy that is a best response to every pure strategy of the opponent.

9See for example Foster and Young (2003; 2006), Young (2009), Pradelski and Young (2012), Foster and Hart
(2015). Additionally papers such as Hart and Mas-Colell (2006), Fudenberg and Levine (2014) study procedures that
converge with probability one to Nash equilibrium.

0This can be thought of as an approximation to a situation where each agent is randomly matched against
the opposing population a substantial number of times. See Ellison et al. (2009) for conditions under which this
approximation is valid.



The first part implies that every pure action has a unique best response and, since a unique best
response must be strict, we may define g > 0 as the smallest difference between the utility of the
best response and second best response to any pure action. The second part rules out games where
one player has a strategy that weakly dominates all others. Throughout the paper, we maintain

this and all other numbered assumptions from the point they are stated.

3 Low Information Social Learning

We propose a learning procedure in which agents have no direct information about the behavior of
others, but observe only the frequency of utilities in their own population. In addition we assume
that agents have only partial ability to keep track of that information over time due to limited
memory.

The population game described above is played in every period t = 0,1,2,.... There is a set =/
consisting of a fixed number of agents that are committed. A committed agent ¢/ € Z7 is committed
to the action a’(£7) € A7. We assume that there is at least one agent committed to each action. We
refer to the other N — #Z7 agents in each population as learners. The state of an agent’s limited
memory at the start of period ¢ is 0{ € © = AV U {0} UZ/, we call this the agent’s type. For
learners, if Hgt € AJ the agent is content with the action th, and if th = 0 the agent is discontent.
The process begins with an exogenous initial distribution of these types.

The play of agents is determined by their type. Committed types play the action they are
committed to. We assume that learners may tremble when choosing their action, independently
across agents and time.'! Each learner trembles with independent probability €, and engages in
uniform play, meaning that the agent chooses an action according to a uniform distribution over all
actions, where the choice is held fixed throughout the round robin. If the agent does not tremble,
his behavior depends on his type th. If agent ¢ is content in period ¢ he plays a{t = Hgt. A discontent
agent i engages in uniform play.'?

We define the payoff frequencies based on the population play during the round robin. Given the
population play oy, let U’ (o J ) denote the finite vector of utilities corresponding to ug (agt, oy J ) for
each a{t € Al and let ¢7(a;) € A(U7(; 7)) be the frequency distribution of utilities of population
j. Let AJ(u?,a;7) C A be the possibly empty subset of actions agt for which uf (a{t, a7y =l
Then the time-t frequency of utility level v/ is ¢/ (ay)[u/] = Za{teAJ(ui,a;j) o (aft).

Committed agents do not change their type. Learners do so based on social comparison. In
period t+ 1, the type 91]"15 41 of a learner in population j is determined by the action agt she played in
period ¢, her previous type th, the social comparison parameter v > 0, and the aggregate statistic
#’(ay) as follows. A learner who trembled is discontent, thus th 41 = 0. Otherwise each agent i

has an independent probability 1 > p > 0 of being active and complementary probability 1 — p of

HNotice that we allow discontents to tremble although since they play the same way if they tremble as if they do
not it does not matter.

121 place of uniform play we can allow state dependent probability distributions that may have a bias towards
certain actions. As long as these probabilities are bounded away from zero independent of € our results are robust.



being inactive. Inactive agents do not change their type so that th 1= ‘91]"r
Active agents may change type depending upon ¢’ (ay) and v; we now explain how this social

comparison process takes place. Let %/ (¢7(cy)) denote the highest time-t utility received in popula-

tion j.13 If w!(a,, oy 7) > W (¢ (cw)) — v he becomes or remains content, so 67, ,, = a’,. Otherwise

he becomes or remains discontent, so Hgt 41 = 0. Note that this social comparison will indicate
whether the agent is playing an approximate best response, since there is always a committed
agent playing a v-best response.

In summary, the play of the learners is governed by three parameters: the probability e of
trembling, the probability p of being active and the social comparison parameter v, the tolerance
for getting less than the current highest possible payoff.!4

Recall that g > 0 is the smallest utility difference between the best response and second best

response to any pure strategy. We assume that the social comparison parameter is less than this.
Assumption 2. v < g.

This assumption implies that there is a unique v-best response to every pure strategy. In
conjunction with assumption that there are no dominant strategies, Assumption 2 also implies that
there is not an approximately dominant strategy: there is no j and @’ € A7 such that u’(a’/, a™7) +

v > maxgc a5 v (a?,a”9) for all = € AN (A7),

4 Aggregate Dynamics with Low Information

The behavior of individual agents gives rise to a Markovian dynamic. This can be described either
statistically in terms of states describing the population shares of the different types or in terms
of agent-states describing the specific types of individual agents. Let @{ € AN(©Y) be a vector
of population shares of the player j types in period ¢t. Define the (finite) aggregate state space
Z = AN(0') x AN (62?) to be the set of vectors z = (@1, ®2). Define the (also finite) agent state
r = (2!, 2?) to be an assignment of types to agents x/ € N®. An agent state z induces population
shares of player types (®!,®2); it is consistent with a state z if the shares match those in z, in
which case we write z € X (z). It is often more convenient to use the aggregate state z but to derive

the transition probabilities of these states it is useful to use the greater detail of agent-states.

4.1 Aggregate Transition Probabilities

In this subsection we derive the transition probabilities of aggregate statistical states P(z¢+1]2¢). To
determine the aggregate transition probability P.(zi+1|z) from z; to z,41 start by choosing an agent
state xy € X (z¢), that is, consistent with z;. For any z;41 € X (2441) we will define the agent-state

transition probability P.(xi+1]r:), and we then compute P.(zi41]2:) = Y i EX (2141) P (xpy1|xe).

13 Agents observe the average payoff distribution of actions played, not the payoff distribution across matches.

14YWe assume that the learning model parameters are common to all players, and that the actions of the discontent
players are drawn from a uniform distribution. As long as all errors and actions have positive probability and the
order of magnitude of the error rates is common to all players these assumptions do not change our conclusions.



This is well defined since while P(z¢4+1|z:) depends on which x; € X (z;) is chosen the sum does
not.?

Define D7(z;) to be the number of discontent agents of population j in x;, and let C(x;) be
the set of content agents in ;. Let 77 denote the learners of player j that tremble and let N7 be
the non-trembling learners. Let R/ C N7 be the agents who are active. Denote an assignment of

actions to all agents by ¢/ € N A

Lemma 1. The aggregate transition probabilities are given by

. . 1\ D/ (@) +#(TINC(ze))
P.(z41l2) = Z Z H 6#7'9(1 . 6)#NJ ( >

b AR (1 — p) NI —#R
xt+1€X(Zt+1)T7O',Rj=1,2 #AJ

I

EP(T,O’,R,JL’t+1|It)
if 07 is feasible with respect to T7 and x4, that is, if it is consistent with the play of the non-

trembling content and committed types, and if x411 € X (2¢41); otherwise Pe(zi41|zt) = 0.

The Appendix has the proof of this lemma and all other results not proven in the text.
Next we note that an agent who is doing well will never get a signal that suggests he is doing

poorly, so these agents only become discontent when they tremble.

Lemma 2 (v-Best Responses Stick). If o7 is feasible with respect to T7 and some content
agent i € R/ is playing an agt which is a v-best response to oat_j, and 0{t+1 =+ agt in Tep1, then
P(T,0,R,xt+1]ze) < €.

Proof. Since i € R’ is content and playing a v-best response to a; 7 it cannot be that ui (aly, 0 7) <

w (¢? (a)) — v. Hence agent i must either remain content with a{t or must have trembled: in the

latter case the whole transition has probability at most e. O

4.2 v-Robust States

We have defined an aggregate transition probability P, (z;+1]z¢). This gives rise to a (time homoge-
neous) Markov process on the state space Z that captures the dynamics of learning. The resulting
stochastic process is governed by a Markov transition kernel P.(-|z) € A(Z) which takes Z into a
probability distribution on Z. Our interest is in studying this Markov process and how it depends

upon €, the tremble probability of each learner.

Definition 1. A state z is v-robust if all the learners ¢ from each population j are content and

playing a v-best response to a7 (2).

Note that a v-robust state is automatically v/-robust for any v/ > v. We say that a state z is
pure for population j if all learners in population 7 have the same type, and that the state is pure

if it is pure for both populations. Otherwise, we refer to as a mized state.

151f we permute the names in x; and the names in x;,1 the same way then the agent-state transition probability
is unchanged.



Define M = max{#Z!, #Z2} to be the maximum number of committed agents in the two
populations. To ensure existence of v-robust states we need M not too large relatively to IV, as
otherwise there might be some learners with none of their actions being a v-best response to the

opponents’ play on the grid.

Lemma 3 (Existence of v-Robust States). If v > 0, there is an n such that if N/M > n a

v-robust state erists.

The next lemma says that if N/M is large then it is also the case that best responses are robust

to small changes in opponents’ play.

Lemma 4. There is a n such that if N/M > n then if o/ is a strict best response to strategy
a=3 € A7 then a’ is a strict best response to all a3 € AN(A7) such that o (a=7) > 1~ M/N.
In particular if a’ is the only v-best response to a™/ € A~J and v < g then it is a strict best response

to a7 so the same conclusion obtains.
Assumption 3. N/M > n where n is large enough that Lemmas 3 and 4 hold.

Lemma 5. In any 0-robust state, the action profile of the learners must be a pure strategy Nash
equilibrium, and any pure strategy Nash equilibrium corresponds to the play of learners in some

0-robust state.

We will discuss the case v > 0 and the relationship to approximate Nash equilibria both pure

and mixed below.

4.3 The Long Run

Our main goal is to characterize the long-run behavior of the Markov process describing the stochas-
tic evolution of agents play. We will show in the case of games with pure strategy equilibria v-robust
states with the largest radius (in the sense of Ellison (2000)) are most likely to be observed in the
long run, and in games without pure strategy equilibria, all v-robust states are about equally likely
to be observed.

As shown by Lemma Al in the Appendix, P, is irreducible and aperiodic. This implies that
for € > 0 the long-run behavior of the system can be described by a unique invariant distribution
ut € A(Z) satistying uP. = u°. We denote by p§ for each z € Z the (ergodic) probability assigned
to state z. To characterize the support of the ergodic distribution on states as e — 0, we use the
concept of the resistance of the various state transitions. Because P,(z'|z) is a finite polynomial in €
for any z,2' € Z, it is regular, meaning that lim._,o P, = Py exists, and if P.(2'|z) > 0 for € > 0 then
for some non-negative number r(z, 2') we have lim,_,o P.(2'|2)e"(**) exists and is strictly positive.
We then write P.(2|z) ~ ¢"*#); let 7(z,2") € [0, 00] denote the resistance of the transition from z
to 2’. Moreover if P.(z'|z) = 0 then this transition is not possible and we set r(z, 2’) = oo, while
if Py(2'|z) > 0 we have r(z,2’) = 0. It is convenient to define transitions between more than two

states since the Markov process may pass through various intermediate states when going from one



state to a target state. We say a path z is a finite sequence of at least two not necessarily distinct
states (20,21, .. .,2) and its resistance is defined as r(z) = S_4_{, 7(zk, 2k+1). Notice that we allow
for loops where some states are revisited along the path.

Note that some agent state transition probabilities are appreciable in the sense that they are
bounded away from zero independent of €, and the same is true of some aggregate transition

probabilities.

5 Analysis of the Low Information Model

In this section we characterize the long-run behavior of the aggregate learning system. Because the
transition kernel P is regular, Young (1993, Theorem 4) implies that as e — 0 the ergodic distri-
butions p¢ have a unique limit distribution g which is one of possibly many ergodic distributions
for Py. From a technical point of view our goal is to describe u€ for € small. We next summarize
the main results of this section; the remainder of the section is devoted to their proof.

We say that a state z € Z is absorbing if the process stays in the state z forever once it has
visited that state, and a state z € Z is transient if there is a positive probability that the process
will never return to state z at any point in time. Our first result characterizes the recurrent classes

of Py as the v-robust states.
Theorem 1. If e = 0 then every v-robust state z is absorbing and all other states are transient.

This is a “stochastic stability of Nash equilibrium” result: It says that for e small the system
spends most of the time at v-robust states, and as we will show play in these states corresponds
to an approximate Nash equilibrium. Notice that we are not restricted to consider pure equilibria
(as in Young (2009), Pradelski and Young (2012)), and we also characterize stochastically stability
of mixed approximate equilibria (similar to Foster and Young (2006), Hart and Mas-Colell (2006),
and Fudenberg and Levine (2014)).

Our second main result characterizes the relative frequency of different v-robust states. To
this end we introduce the standard definition of stochastically stable states, the states z such that
lime_,o p, > 0. We define the basin of the v-robust state z to be the set of states for which there
is a zero resistance path to z, and no zero resistance path to some other v-robust state z’. We can
equivalently define the basin of the v-robust state z as the set of starting states that lead to state
z with probability one according to Py. We let r, denote the radius of the v-robust state z; this is
defined to be the least resistance of paths from z to states out of its basin.

When 0-robust states exist we have a simple characterization of their radii. For each 0-robust
state z, we define the non-negative integer number 74 € Z, for player j to be the least number of
learners of player —j that need to deviate for there to be a learner of player j such that the learner
is not using a best response. In the case v > 0 the mixed equilibria all have radius 1 and the radius

1,2

of a pure equilibrium is approximately min{r,,r2}. Notice that the latter increases linearly with

N, hence these are large relatively to the radii of mixed equilibria.



1 .2

Theorem 2. (1) If z is a 0-robust state, its radius is r, = min{r,,r;} > 0. Moreover for any

0-robust state Z # z there is a path from z to Z that has resistance r.

(2) If z and 2’ are O-robust states, then 5—5 ~ €' "= and in particular those states with largest
radius are stochastically stable.

We will give similar results for the case v > 0 below. The result shows that for any pair of pure
strategy Nash equilibria corresponding to O-robust states z and 2’ respectively, the system spends
approximately €"< " times as much time at the pure equilibrium associated to z as at the pure
equilibrium associated to z’. It follows from the fact that if the probability of leaving the state z

"2 Moreover, Theorem 2 provides

is of order €=, then the expected length of time spent at z is €~
a characterization for computing all relative ergodic probabilities of equilibria, and shows that the
system spends most of the time at O-robust states, associated to Nash equilibrium, that have big
radii as they are hard to leave. This characterization is based on the property that random search
is relatively as likely to find one equilibrium as another, meaning that once an equilibrium is left
there is no differentiation as to which equilibrium the system is likely to move next, what matters
is the leaving time. Note that our characterization is simple in that it only requires one to compute

the radius r, of each O-robust state z.

5.1 Learning Dynamics when € > (

To understand how Theorem 2 arises we begin by examining the aggregate dynamics when e is
small but positive.

In analyzing resistance r(z, 2’), it is useful to observe that the resistance of a sum is given by
the least resistance of any term in the sum. Since P,(z’|z) is defined as a sum and the terms in the
sum are P(T,0, R, x4+1]2¢), it is sufficient when analyzing resistance to look for the target z;11 and
realizations 7,0, R for which the probability P(7T,0, R, zi+1|z:) has the least resistance. Denote
this resistance as r(z¢,v411). For this to have finite resistance it must be that o/ is feasible given
T7 for j = 1,2 and that x;11 € X (21). In that case the resistance is equal to number of trembles,
r(x, 1) = #T 1+ #T2. In particular to show that the aggregate resistance is zero it is sufficient
to find an agent state resistance for the transition that has resistance zero.

The next lemma establishes that if all the learners are currently playing a v-best response then
there is a zero resistance path to a v-robust state in which they play the same way. To state this
precisely define a partial ordering = over states. Recall that D7(z) is the number of discontent
agents of player j in state z. For example, when all learners from population j have 93 € A,
Di(z) = 0. Let a/(z) € AN*Dj(Z)(Aj) be the action profile corresponding to the content and
committed types in z. We say that the state z is as least as large as state 2/, written z = 2/, if for
j=1,2DJ(z) > D’(z), and @’ (2) is consistent with @’ (z’) in the sense that (N — D’ (z"))a’(2') =
(N — Di(2))ad(z) + (Di(z) — DI(2'))a for some action profile & € AP’ ()=D7()(A47). This says

that we can get from 2’ to z by making some agents discontent.
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Lemma 6. If z = 2 and 2 is v-robust then there exists a zero resistance path (of length 1) z from

z to Z.

The next lemma says that in calculating least resistance paths we may assume that discontent
agents remain discontent. We refer to it as the no cost to staying discontent principle. Formally

we have:

Lemma 7. For any pathz = (2o, 21, . . ., 2t) starting at any zo then there is a pathz = (2o, 1, . . . , Z})

with Zo = zo and r(z) < r(z) satisfying the property that Z; »= Z;_1 and Z; = z; for all 1 <71 <t.

Proof. If r(z) = oo, for any %y € X(z9) and any f = 1, take #; to have all learners discontent
DJ(2,) = N — #Z/ for both j and note that (%) < oo since we may have all learners tremble. It
follows that Z; = Zy, 2.

Next, suppose that 7(z) < co. We may assume from Lemma A2 in the Appendix that in z the
least resistance transitions have agent transitions in which no discontent trembles and every content
plays the action with which they are content. We will now find a path with ¢ = ¢ and prove that if
Z; = zr we can find a state satisfying Z; = z;, 2,1 and 7(2;, Z;+1) < 7(2r, 2741)- To do this use the
fact that Z, = 2, to order the agents of each player j so that the first N — DJ(Z,) — #Z/ agents in
#, € X (Z;) have exactly the same type as the first N —DJ(2,) — #Z7 agents in z, € X(z;). Observe
that r(zr, zr+1) is determined by a particular target x;+1 € X (2,41) and realizations 7;,0-, R,
and that r(z;, z;41) = #7T, + #T.2 since o is feasible as we have assumed a finite resistance path.
Denote by A7 (z) the set of feasible o/ € AN(A7) such that No/ = (N — DJ(2))a’ (z) + D?(2)&’ for
some action profile & € AP’()(47). Because Z, = z, we have A (z,) C A%(%,) and the realization
o, is feasible for . so we set 6, = o,. We also define R, to be R, applied only to those agents
who are content in Z,, that is, discontent agents are inactive, but content agents are active if and
only if the corresponding agent did in R,. Now let 7; be 7; applied to those learners who are
content in Z,. Given &,,7; and R,, take Z,41 € X (2741) to be the corresponding agent state.
Then 7(%;, Zr41) = #T} + #T2 < #T + #T2 = r(2r, 2,41) since T, applies to every agent to
which 7 applied. By construction no agent is content in Z,,; unless she has the same type as in
Z, so certainly Z;411 = Z;. Also by construction every agent who is content in Z,y1 has the same

type as the corresponding agent in x,41 so indeed Z;11 > 2. O

We introduce a concept that captures the support of mixed strategy profiles that correspond to
the play of content agents. More precisely, the j-width of a state z denoted w’(z) € Z, is the number
of distinct types for content learners of player j. The width of a state z is w(z) = w!(z) + w?(z).
Observe that pure v-robust states z have w(z) = 2.

We then define a proto v-robust state z, which is a state in which all content agents from each
population j are playing a v-best response to ™/ € A77(z). We divide these into three types: a
totally discontent state is one in which w(z) = 0 so all learners of both players are discontent; a
semi-discontent state in which all learners of one player are discontent but w(z) > 0 so at least one

learner of the other player is content, and a standard state in which at least one learner of each
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population is content. The next result characterizes transitions between states that involve proto

v-robust states with the property that paths have no resistance.
Lemma 8. (1) If z is totally discontent there is a zero resistance path to every v-robust state.

(2) If z is proto v-robust but not totally discontent there is a zero resistance path to a v-robust

state 2; and if z is standard we can choose % so that w(z) > w(Z).

(3) If z is not proto v-robust there exists a zero resistance path to a state Z with w(z) > w(Z).

5.2 Learning Dynamics when ¢ =0

We establish Theorem 1 that the v-robust states are exactly the absorbing states, with all other

states transient when there are no tremble shocks.
Theorem 1. If e = 0 then every v-robust state is absorbing and all other states are transient.

Proof. First we establish that if ¢ = 0 a v-robust state z is absorbing. Starting in a v-robust z,
take z; € X(z). Since ¢ = 0 nobody trembles so 77 = (). Consider any feasible o/ and any
specification of which learners are active. By assumption all learners are content so by Lemma
2 they all remain at G{t 11 = aft. The committed agents never change state by assumption, so
ZTty1 = o with probability 1. This implies that z;y1 = 2z; with probability 1.

If states are proto v-robust there is a zero resistance path to a v-robust state by Lemma 8 part
(2), otherwise, by Lemma 8 part (3), there is a zero resistance path to a state with strictly less
width. As long as the system does not reach a proto v-robust state, it has positive probability of
moving along zero resistance paths to states with strictly lower width, applying part (2) and (3)
of Lemma 8, until it visits a proto v-robust state with w > 0 or reaches a totally discontent state,
from which it has a positive probability of being absorbed at a v-robust state as established in
Lemma 8 part (1). O

Since there are a finite number of states, every state is either recurrent or transient, so when
€ = 0 the system will eventually be absorbed at a r-robust state and thus at an approximate
equilibrium. It follows from Theorem 1 that the limit distribution p can place weight only on

v-robust states.

5.3 Characterization of the Limit Ergodic Distribution

In characterizing the ergodic distribution p. for small €, we combine some standard technical tools
and the more recent method of circuits developed by Levine and Modica (2016). We extend the
definition of the radius to sets: If S is a union of recurrent classes, then the radius rg is the least
resistance path from .S out of the basin of S, that is, to states where there is a positive probability
of being absorbed outside of S. Let R(z,2’) denote the least resistance of any path that starts
at z and ends at z/. We say a set of v-robust states € is a circuit if for any pair z,2" €  there

exists a least resistance chain, meaning a sequence z = (zo, 21, - . ., 2¢t) With 29 = z to z; = 2/ with
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2, € Q and R(zk, zg41) = 1z, for k= 0,...,t — 1. That is, one of the most likely (lowest order of

€) transitions from zq is to 21, one of the most likely transitions from z; is to 22, and so forth.

T, —Tz

Lemma 9. If all v-robust states are in the same circuit then 5—; ~ € , and in particular the

set of stochastically stable states is exactly the v-robust states with the largest radius.

This is Theorem 9 in Levine and Modica (2016), specialized to the case where the only recurrent
classes when € = 0 are singletons, and there is a single circuit. To understand why this is true we
sketch two proofs. First we use the method of Ellison (2000) to show that the stochastically stable
states are those with the largest radius. For any target z define the modified resistance from 2z’ to
be mr(2',2) = min ,_(. ., . R(2',21) + R(21,22) + ... + R(2¢-1,2) — 72 — 725 — ... — 7, and the
modified co-radius as ¢, = max ,mr(z’,z). Define the modified co-radius cg of a set of recurrent
classes S to be the minimum over z € S of ¢,. Ellison shows that a sufficient condition for a set S
of v-robust states to be stochastically stable is that rg > cg. If we let ©* denote the largest radius
of any v-robust state then the set S of v-robust states with radius 7 itself has radius rg at least
equal to 7. By assumption, all v-robust states are in the same circuit, so we can compute an upper
bound on c¢g by considering, for each state 2’ ¢ S, a least resistance chain from 2z’ to z, meaning a
sequence of states for which the resistance R(zy, 2x+1) = 72,. The modified resistance of this chain
isry +ry,y +..4+1, =7y — 7Tz —...— 7T, =1,y and since 7,y < 7 = rg the conclusion follows.

For the sharper result that /’j—i ~ €277 we use the method of Levine and Modica (2016).
For any v-robust state z we consider trees with root z, where the nodes of the tree are all of the
v-robust states and the resistance of the tree is the sum of all the R(zk, zx+1) where 211 is the
successor of z;. Using the Markov chain tree formula (see for example Bott and Mayberry (1954)) it
follows, as noted by Freidlin and Wentzell (1984), that log(uS/pS,)/ log e converges to the difference
in resistance between the least resistance tree with root z and that with root 2’. Notice that since
each v-robust state must be in the tree, the resistance of connecting that node is at least r, , so
that the least resistance tree cannot have less resistance than the sum of the radii of all nodes
except the root. We now show there is a tree with exactly that resistance by building it recursively.
Place the root z first. There must be some remaining node that can be connected to the tree at
resistance equal to the radius because all stable states are in the same circuit. Add that node to
the tree with that resistance. Continuing in this way we eventually construct a tree in which the
resistance is exactly the sum of radii of all but the root node. It follows that the difference in
resistance between the least resistance tree with root z and root 2’ is exactly the difference in the

radii which is what is asserted in the Lemma.

5.4 Exact Pure Strategy Equilibria and Stability

In this section, we prove Theorem 2 by analyzing the stability of pure strategy Nash equilibria. We
assume that pure strategy Nash equilibria exist, and set the social comparison parameter v = 0.
(Recall that every pure strategy Nash equilibrium corresponds to the play of learners in a 0-robust
state.)
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Learners play a fundamental role in determining least resistance paths. On a path that moves
away from a 0-robust state, content learners must tremble, and so the path has positive resistance.
In addition to the random mistakes, every active learner that is not playing a best response transi-
tions to discontentment with no resistance irrespective of her current type. Recall that rJ € Z, for
player j is least number of learners of player —j that need to deviate for there to be a learner of
player j such that the learner is not using a best response. Then in finding least resistance paths
out of the basin of a O-robust state z, we will establish that the critical threshold to be considered
is the smaller of 71 and r2. We will use this to characterize the radius of a 0-robust state z, and
show that the minimum resistance to any other O-robust state 2’ is the same for every z’. We now

prove Theorem 2.

1 .2

Theorem 2. (1) The radius of a 0-robust state z is r, = min{r,,rs} > 0. Moreover for any

0-robust state Z # z there is a path from z to Z that has resistance r.

(2) If z and 2’ are O-robust states, then 5—5 ~ €' 7" and in particular those states with largest
radius are stochastically stable.

Proof. Consider a least resistance path z from a 0-robust state z to any 0-robust state Z. From

Lemma 7 we know that there exists a path z = (2o, Z1, ..., Z) from Zp = z with r(z) < r(z) and

Z+ = Z . Since Z; = Z and % is O-robust, by Lemma 6 there is a zero resistance path from Z; to Z.

Then it is sufficient to compute 7(Z) in order to obtain the radius of z.

We begin by characterizing the basin of the 0-robust state z. Lemma 7 implies it suffices to
consider D’(2,) for 7 < t, since discontent learners stay discontent on the path Z. If for both
players j we have D7(%;) < r, we show that Z, is in the basin of z. Suppose discontents play
the unique best response a’ in each population j, which gives rise to a feasible profile of actions,
that they do not tremble, are active and become content. This transition has no resistance. In
the resulting state all learners are content and playing a’ the unique best response to any feasible
a~J; that is, the state is z. Hence we have a zero resistance path back to z. However to be in the
basin there must not be a zero resistance path to some different O-robust state 2. We show that
any such path starting at Z; has a resistance of at least one. Moving along any such path requires
that for all content agents of at least one player j it must be that &’ # a’, from Assumption 1.
Since D’(%;) < r, for j = 1,2 all content agents are playing a best response which implies that any
transition (Z,,2’) on the path to 2 we must have that DJ(2') > DJ(2,) for at least one player j.
But in this transition at least one content agent who is playing a best response becomes discontent,
by Lemma 2 this transition has resistance at least one.

Next, we establish that any path from z to any other O-robust state Z has resistance r,. We
show that if DJ(2,) > r;7 for either player j then there exists a zero resistance path to any 0-
robust state. Suppose that D7(Z;) > r;7 for one player j. Then consider a transition where the
profile o/ is such that all content agents in —j are active and observe a better response played by
a committed agent, so become discontent, while learners in population j are inactive and do not

tremble. This transition has zero resistance. The next transition has a profile a7 so that contents
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in j are active and get a signal about a better response provided by a committed agent, do not
tremble, and become discontent while agents in —j do not tremble, are inactive, and continue to be
discontent. It follows that this transition has no resistance. By Lemma 8 there is a zero resistance

path to any 0-robust state. Hence part (2) follows directly from Lemma 9. ]

We have shown that computing the radius of a 0-robust state requires us to find two thresholds,
one for each player role, that represent the least number of learners that are able to move all
learners to discontentment. In words, Theorem 2 establishes that as long as the system remains
within the basin of a O-robust state, not too many discontent agents are experimenting with new
strategies and the rest of the learners are content, and playing a best response. Thus from states in
this basin the discontent learners are likely to find their way back to equilibrium. Interestingly, we
find that once the system leaves the basin of a 0-robust state, there must be lots of agents trying
new strategies, which in turn pushes everyone into the state of searching. Since once all learners
are discontent the system may transition to any other O-robust state with no resistance, the result

entails that there is a single circuit containing all O-robust states.

5.5 Stability of Approximate and Mixed Strategy Equilibria

We now analyze the ergodic distributions and stochastically stable states in general finite two
player games, where pure strategy equilibria need not exist. We provide the complete structure of
the transitions between equilibria. We will show that the system starting at a mixed equilibrium
either moves with resistance 1 towards mixed equilibria with smaller supports, or transitions along
resistance 1 paths to every equilibrium. On the other hand we establish that if the system begins
at pure equilibria, it transitions to every equilibrium.

Since exact mixed strategy equilibria need not be attainable by population play represented on
the grid AN(A), we allow agents to evaluate their current actions according to a strictly positive
social comparison parameter, that is, we now consider v-best responses for v > 0. In this case
Lemma 4 ensures that a v-robust state exists. Note that in mixed v-robust states, aggregate play
corresponds (modulo the play of the committed types) to a sort of mixed approximate equilibria.
Precisely, in any mixed v-robust state z the action profile of the learners & is such that for every
learner in each population 7, uf( g, al) > u{(&g, a~J) — v for each ag in the support of & and all
il € AJ.

We now need to explain an essential difference between the structure of basins in the case v =0
and the case v > 0. Starting at a strict Nash equilibrium & as the play of —j shifts to put increasingly
more weight on actions other than ¢=7, eventually two things happen to j’s best responses. First,
additional actions may become v-best responses in addition to a7, and &’ will eventually no longer
be a v-best response. In the case v = 0 the assumption of unique best responses on the grid assures
that these two changes take place for exactly the same play of —j. However, with v > 0, in general
additional v-best responses arise before a7 is no longer a v-best response. This raises the possibility

that play might transition from a strict Nash equilibrium by modifying the play of both players so
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that both have additional v-best responses. When v = 0 this possibility does not exist: Since the
point at which one player has a different best response already gets out of the basin, it cannot be
the least resistance path for both players to tremble so that both are ready to switch, it is lower
resistance just to tremble the one for whom the least number of trembles are required.

To be more formal for each pure v-robust state z with content actions corresponding to a/, a7,
we define the non-negative integer 1 € Z, for player j to be the least number of learners of player
—j that need to deviate so that a’ is no longer the only v-best response to any feasible play of
population —j. Similarly, let the non-negative integer 7 € Z, be the least number of learners of
player —j that must deviate for there to be a learner of player j such that the learner is not playing
a v-best response. Observe that 74 > rJ and N — #==7 > 7.1 > 0 for all j. If for both j we
have 77 > rl +r? then “sidewise” escape where both players tremble will have lower resistance than
“direct” escape where only one player trembles. However as v — 0 both |7 — 72| — 0 so we might

hope this is not the case.

Lemma 10. There is a x and v with N/M >~ and v < x such that for every pure v-robust state

z we have for at least one j that 75 < rl +r% | and for both j that rJ > 1.

Ly

We assume that the parameters v and N/M are such that we have separation between v-robust

states.

Assumption 4. v < x and N/M > ~ where v is large enough and x is small enough that Lemma
10 holds.

We next characterize the least resistance to leave the basin of a pure v-robust state z in terms
of the thresholds 7! and 72, which represent the least number of learners that need to deviate so
that a critical mass of agents are no longer playing a v-best response. Note that if a is a pure
equilibrium, the least number of learners that must deviate before the original actions fail to be a

best response increases linearly with N.

Lemma 11. The radius of a pure v-robust state z is r, = min{7., 72}, and if Z is any v-robust

state there is a path from z to Z with resistance equal to r,.

We introduce a notion that captures the largest mass of learners in the support of the current
distribution of content actions: for any state z let the height h(z) € Z4 be the largest number of
learners playing an action in the support of @(z) the action profile that corresponds to the aggregate
play of contents and committed agents.

We now determine the least resistance to leave the basin of mixed v-robust states. In general,
there will be multiple mixed approximate equilibria in a neighborhood of mixed equilibrium, so
one might expect to move between those mixed approximate equilibria through one agent changing
play at a time. The next lemma shows that, unlike the case of pure v-robust states, the radius
of mixed v-robust states is 1 regardless of IV, and that once we leave the basin we either move to

another mixed v-robust state with weakly smaller support of the content action distribution, for
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example, a state with exactly the same support and slightly different numbers of content agents

using each action; or reach some other v-robust state.

Lemma 12. The radius of a mixed v-robust state z is v, = 1, and there is either a path with
resistance 1 to every v-robust state Z or to a v-robust state Z with w(2) < w(z) and either w(Z) <
w(z) or h(2) > h(z).

Equipped with these lemmas, we can determine which states are stochastically stable:

Theorem 3. For v-robust states z and z' we have 5} ~ €'z 772 s0 in particular the stochastically

Z/

stable states are those with the largest radius.

Proof. The fact that all v-robust states are connected by least resistance paths follows from Lemmas
11 and 12. The first conclusion follows from Lemma 9, and the second follows immediately from
the first. O

A key implication of our characterization is the analysis of the relative likelihood of pure and

mixed approximate equilibria.

Corollary 1. If z is a mized v-robust state and 2’ is a pure v-robust state, and N is large enough

that r,» > 1, then /Ij} — 0 as e — 0.

2!

Proof. Since r,: increases linearly with NV by Lemma 11, choose N so that r,» > 1. From Lemma
12 it follows r,» = 1. Then €'~ — 0 as ¢ — 0. O

Thus for large populations of interacting agents we can also conclude that in games with pure
equilibria the stochastically stable states must be pure v-robust, and hence the pure equilibria will

be selected over mixed ones in the long run.

6 High Information Social Learning

Our learning procedure thus far has focused on agents that have very limited social information
and short recall about the past. We now consider “high information” models where agents both

observe and remember more.

6.1 The Learning Procedure

We make three changes to the learning procedure concerning observability and memory. Previously

we assumed that in every period ¢ an agent observed ¢/(ay)[u/] = 3 ; NI az(agt), the
it t

distribution of utilities corresponding to actions actually played. Now we assume that an agent

ul
observes the joint distribution of utilities and actions played in the population game

a{(a{t) for agt € AJ(u, oz;j),

Y () [, al] = ) o
0 for al, ¢ AV (v, a;”7).
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Concerning recall, we now assume that at the beginning of a period agents can recall which actions
were v-best responses during the last finite T" > 1 periods, and that all agents recall the last action
they played, not only the content agents as in the low information model.'6

Formally an agent’s type is 0{ € @Jf = (47 x {0,1} x TAj) U Z7. There is a given initial type
distribution. Subtype 0 indicates the agent is discontent, and subtype 1 indicates the agent is
content. Thus, the first part of a type for learners A7 x {0, 1} gives the previous action taken a{t_l
for both content and discontent agents. The rules concerning the dynamics of contentment do not
change. The final part characterizing the learner’s type TZ-JI; [a’] is the amount of time since each
action a’ was observed to be a v-best response to a;_ flz szt [a’] = 0 if @/ was a v-best response to
Q. . otherwise let [a’] = min{T, Téfl[aj ] + 1}. Since this is the same for all learners of player j
we refer to this as the common memory of player j and the actions a’ for which szt [a’] < T as
the players’ common memory set, which we denote by AZ_}. This simplifies the description of the
state since we can use a single memory that is relevant for all agents of a player.!” The individual
memory set of agent 7 of player j is the union of the common memory set and the last action that
agent played, that is, Ag = A]f U {a‘gt_l}.

The impact of the memory set is only on the behavior of discontent agents: rather than engaging
in uniform play over all actions A’ they engage in uniform play only over their individual memory
set Ag . Even though the behavior of the agents in this model can depend on their memory, we will
use the same definition of a v-robust state: It is a state where each learner is content and playing a
v-best response to the aggregate play of the other population. Therefore, the pure v-robust states
will still be the pure strategy Nash equilibria, and the mixed ones will correspond to a form of
mixed approximate equilibrium.

Notice that our procedure differs from the formulation of Young (1993) in which agents also
have social information but of a different kind: There information is a time series rather than a
cross-section. Specifically, in Young (1993), in every period only one agent per player role moves at
that period, and that agent takes a size K random sample of play from the last T periods without
replacement. Given this sample, certain actions are best responses, and only those have positive
probability of being played. In contrast, our model allows agents to choose actions from the last T’
periods that were v-best responses in the period they were used based on that period cross-section
information.'® Our model also differs from Young (1993) and related papers in that agents do not
take random samples. Notice that in the present model the cross-section information is not trivial

since all agents in each population takes an action at once.

16Note that actions that are best responses are those with the highest utilities since agents observe the payoff to
each action given the presence of committed types.

1"We think of this common memory set as the amount of public information available to each population. As
we discussed the bounded memory assumption is motivated by the limitation of record-keeping devices: borrower’s
credit history is limited, insurance companies only have access to the most recent driving records that are cleared
after a certain number of years; and in informal markets information is usually transmitted through word of mouth
that naturally fades away.

18T a single-population stochastic evolutionary model, Oyama et al. (2015) consider sampling best response pro-
cedure under which agents take a random sample from the current actions played by their opponents and choose a
best response against this empirical distribution.
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6.2 Equivalence between 7'=1 and the Best Response Dynamics

Observe that when T' = 1, discontent agents randomize over the last period action and the current
v-best response. This is similar to the two-population version of the best-response-plus-mutation
dynamic Kandori et al. (1993) (KMR henceforth). The specific version of their model we focus
on is called best-response with inertia: It assumes that in each period with some probability 1 >
A > 0 each agent independently continues to play the same action as in the previous period, with
probability 1 — X\ — € they play a best response to the population distribution of opponent’s actions,
and with probability € they choose randomly over all possible actions. While in the one population
case the assumption that A > 0 plays little role, as KMR show by example it can lead to better
behaved and more sensible dynamics in the two population case with results similar to those with
one population.'® For an analysis of this dynamic see Samuelson (1994). We will show that when
T =1, v = 0 and the unique best response property is satisfied, the high information social learning
has similar features to best response with inertia.

In order to make this comparison formally, we must extend the state space to incorporate the
current population play. Let <I>z e AN (@]T U A7) be a vector of population shares of the player j
types in period ¢, which includes the description of play of the opposing population «;_ _jl in period
t — 1. Both our dynamic and the best-response with inertia dynamic are Markov processes on this
extended state space.

As in Section 5.4 we restrict attention to exact best responses, that is, v = 0. We remark that
Assumption 1 implies that for each population j there is a single action a’/ with Tft [a’] = 0 and all
the other actions @ # a’ have Tft [a@/] = 1. All actions that are not best responses to the previous
population play have been forgotten. Finally, for compatibility we assume that #=/ = 0 for each
population, that is there are no committed agents, but rather that players directly observe which

actions are best responses. Since we assume that N/M is large this is a reasonable approximation.

Theorem 4. High information social learning with T = 1 is equivalent to best response with inertia
in the sense that they have the same recurrent classes and the same least resistance between any

pair of such classes.

Proof. Define z to be equivalent to 2’ if they have the same action distribution, and consider the
equivalence classes {z}. In the best response with inertia dynamic the non-action part of the state
(subtypes and common memory sets) never changes so, given the initial condition, there is a unique
point in each {z} that will ever occur. This in turn implies that, along the least resistance path
from that unique point in {z;} to the unique point in {241}, the least resistance is given by taking
all the actions that are not best responses to o, _jl and the increase in the number of agents playing
those actions by j summed for j = 1,2. In high information social learning with 7' = 1 dynamic
regardless of the starting point in {z;} the least resistance over all targets in {241} is exactly the

same since agents that are not playing a best response to o_ 31 must have trembled: content and

911 the study of Markov chains this sort of inertia is called “laziness,” and is used to turn periodic irreducible
chains into aperiodic ones; it serves the same purpose here by ruling out limit cycles.
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discontent agents play the unique best response to «_ _jl. Hence if we have a recurrent class with
respect to best response with inertia dynamics, a subset of the equivalence classes of states in that
recurrent class are a recurrent class with respect to high information social learning with 7" = 1

dynamics, and the least resistance between recurrent classes is the same for both dynamics. ]

6.3 Learning Dynamics with 7" Limited Memory

We next consider special classes of games in which whether there is stochastic stability of Nash
equilibria depends on the memory length. As the amount of memory increases, we can show
stochastic stability of Nash equilibria under less restrictive conditions on the game, and if memory
is long enough we obtain stochastic stability for generic games.

It is convenient to define a block to be any set W = W' x W? with non-empty subsets of
actions W7 C AJ for j = 1,2 and the associated block game is the original game restricting
payoffs and actions to the W block. A block W is curb (“closed under rational behavior”) if
argmax,;c 45 v (a?,a™7) C WY for every action profile o € A(A), where o/ (a?) = 0 for o’ ¢ W7,
and every player j (see Basu and Weibull (1991)). That is, a set of action profiles is curb if it
contains all best responses to itself. We define a k x [ block W to be a block with #W?! = k and
#W? = [. Define a best response path to be a sequence of action profiles (a1, as, ..., a;) € (Al x A?)?
in which for each successive pair of action profiles (ay,ar+1) only one player changes action, and
each time the player who changes chooses a best response to the action the opponent played in
the previous period. We say a game is k x [ acyclic if for every action profile a there exists a
best response path starting at a and leading to a k x [ curb block W. Notice that every game is
# A x #A? acyclic since the entire game is a curb block and that any 1 x 1 acyclic game is acyclic

(Young (1993)). The following game is 2 x 2 acyclic but is not acyclic:?°

H T U D
20 02 00 0,0
02 20 00 00
00 00 55 82
D 00 00 91 28

S H =

A more general class of k x [ acyclic games that includes this example consists of #A! x #A?
games, where #A! = n' .k and #A% = n? -, with k x [ blocks along the diagonal in which payoffs
are strictly positive and in each block there is a unique mixed strategy equilibrium, and all other
payoffs are zero. This class is similar to coordination games but with mixed equilibria on the blocks
along the diagonal instead of pure strategy equilibria.

From Theorem 4 and Lemma A3 in the Appendix (see also Samuelson (1994)), we know that

only Nash equilibria are stochastically stable for acyclic games and 7" = 1.2! We next show that

20The game is not acyclic because there is no best response path from (D, H) to a strict Nash equilibrium, but is
2 x 2 acyclic since from any action profile either curb block {H, T} x {H, T} or {U, D} x {U, D} can be reached along
a best response path.

21Samuelson (1994) does not provide a proof of this so we give one for completeness.
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our learning procedure leads agents to equilibrium if more memory is combined with our weaker
notion of k x [ acyclicity where best response paths need to end up in a curb block. In particular, as
memory grows the requirement of k x [ acyclicity is weakened, thereby encompassing a broader class
of games. If we consider memory length equal to the largest curb block, we obtain stochastically

stability of equilibria regardless of the payoff structure of the game.

Theorem 5. If the game G is k x | acyclic then, with memory T > k x 1 and ¢ = 0, v-robust states

are absorbing and other states are transient.

Proof. Starting at a v-robust state z since all learners are playing a v-best response, all content
agents remain content with their action, so such states are absorbing. We next prove that from
any non v-robust state there is a zero resistance path to a v-robust state.

Pick any state z; and suppose it is not v-robust. Then, there is zero resistance to a state
zt+1 in which all learners of one population, say j, play the same action and are inactive, while one
committed agent in population —j plays the v-best response a7 to a{ , and all learners of population
—j are active and those agents that are not playing a v-best response become discontent. From
z1+1 there is zero resistance to a state z;42 where learners of population j are inactive and hold
their actions fixed, while all learners of population —j play the same v-best response a=7 to ozf 41
in the common memory set. We proceed similarly starting at z;y2 and moving to z;;3, we assume
agents in population —j hold their play fixed and are inactive, whereas one committed agents in
population j plays the v-best response a’ to 0y +j2, and agents of player j are all active and those
not playing a r-best response become discontent. Consider the transition to state z;y4 in which
agents in population —j play the previous action and are inactive, while learners in population j
all play the same best response a/ to a™/ in the memory set and are inactive. The resulting state
Zty4 18 pure.

Take any pure state z;. Since the game is finite and k x [ acyclic, the best response path from
this state goes to a k x [ curb block W in a finite number of steps. Notice that in the following
transitions when moving along best response path we use only best responses to play in the previous
period, so it suffices to have T' = 1. First, a committed agent in one population, say j, plays a
v-best response a’ to the population play —j, all other agents play their previous actions and
all learners from population j are active so those not playing a’ become discontent. In the next
transition, all discontent learners of population j (who played the v-best response a/ which belongs
to the common memory set A%) are inactive. All agents in population —j play the same actions
as in the previous period and are active, and there is a committed agent in population —j whose
committed action a7 is a v-best response to the population j play a7, so the active learners in
population —j become discontent. We continue until the state is such population play of learners
corresponds to the k x [ curb block.

Start at z; where population play of learners lies in a k x [ curb block W, and pick any A]f C Wi
for each j with T'= k x [. If in each population j all content agents are playing a v-best response,
and for each j the common memory set A]f only contains actions that are v-best responses to any

oy I e A (z¢), then there is zero resistance to discontents choosing a{t € A]f, all agents being
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active and becoming or staying content, hence reaching a v-robust state. Otherwise, there exists
at least one agent in one of the populations that is not playing a v-best response to a; I e A (2¢).
Consider the transition where all agents play the same previous action and in one population j those
agents that are not playing a v-best response are active and become or stay discontent because they
observe a v-better response played by some committed agent which implies that #A]f increases
by 1 and that Ajf C WJ. If there are agents in population —j that are not playing a v-best
response, we proceed to repeat the argument which results in a larger memory set A;j C W,
Eventually, after £ x [ steps we have not lost any relevant memory since T' = k x [ so all learners
are discontent and we have expanded each memory set A]f to include all actions in the k x [ curb
block W, which contains a v-Nash equilibrium by definition. There is zero resistance to having all
discontents playing the action profile corresponding to such equilibrium, all learners being active

and becoming content; reaching the corresponding v-robust state. O

We showed that, unlike best response with inertia, high information social learning Nash equi-
librium is stochastically stable for generic two player games, not only acyclic, if memory is long
enough, that is if T > #A! x #4222

As we have seen, only pure v-robust states have radii that increase linearly with population size
N. In the following result, we show that it is possible that radii of mixed v-robust states increase
with N under high information social dynamic and the support of those v-robust states belongs to

a curb block that does not include all equilibria.

Lemma 13. If a curb block does not contain all Nash equilibria then there exists a constant k > 0
such that the radius of the set of v-robust states for which content agents play entirely within the

curb block is at least kN .

In particular this applies to a curb block that does not contain all Nash equilibria but contains

only one equilibrium and that equilibrium is completely mixed.

7 Examples

In this section, we compare the equilibrium selection of high and low information models in two
examples. We observe that when there are no committed agents, #=/ = 0 for j = 1,2, and agents
are able to directly observe the best responses, the computation of the radius and co-radius with

high information model is exactly the same as for best response with inertia.

Example 1. Our first example illustrates that the low information dynamic can select different
equilibria than the high information dynamic with low memory.

Consider the following game Gj:

22 For generic games the stochastically stable set is a minimal curb block under Young’s (1993) dynamic; similar
results are obtained by Hurkens (1995). In some games minimal curb blocks are strictly larger than the support of a
Nash equilibrium.
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A B C D
A 55 00 00 00
B 00 1010 09 90
cC 00 90 10,10 09
D 00 09 90 10,10

This game is 1 x 1 acyclic and coincides with what Young (1993) calls an “acyclic” game. In
Theorem 5 together with Lemma A3 we have shown, as well as Samuelson (1994) did, that in
1 x 1 acyclic games with generic payoffs the limit distribution for the high information with 7' =1
dynamic contains only singleton pure Nash equilibria.

There are four pure strategy equilibria which we label A, B, C, D.

Initially we consider v = 0. We will show that A has the largest radius so is stochastically stable
in the low information model, yet in the high information dynamic with 7"= 1 (which is the same
as best response with inertia) the BC'D block defined by {B,C, D} x {B,C, D} is stochastically
stable. Note that in either dynamic B, C, D have equal ergodic probability by symmetry, that is,
1p = po = M-

We start by observing that to escape from A requires about N/3 of one population to tremble,
say to B, so that is the radius of A. On the other hand to escape from B, C, D requires only about
N/11 of one population to tremble, from B to C, from C to D and from D to B, so those are
the radii of B,C,D. Hence with low information dynamic A is stochastically stable according to
Theorem 2 as it has the largest radius among pure strategy equilibria. To analyze the best response
with inertia dynamic, define S to be the union B, C, D. The radius rg of S is at least N/2 since if
1/2 of one population is playing in B, C, D one of those strategies must earn at least (1/2)(6+41/3)
while playing A yields no more than 5/2. On the other hand, the co-radius of S is about N/3
since A is the only pure Nash equilibrium outside of S and it takes at least that amount to escape
from A. Hence by Ellison’s theorem the radius of S is bigger than the co-radius so S contains all
stochastically stable states.

One of the reasons that the set S is stochastically stable under the best response with inertia
dynamic is that when agents are at the equilibrium B and enough opponents switch to strategy C,
agents’ behavior adjusts under the assumption that participants can immediately see that choosing
C' is the optimal strategy. Identifying actions therefore allows them to move to C. In contrast, we
focus on situations where agents do not have common knowledge of the structure of the game. We
think it is plausible that agents will then base their decisions upon social information. Identifying
payoffs, but not actions, allows agents to potentially move from B to A, and once they arrive at A
stay there for a long time.

Note that the low information dynamic can also predict a different equilibrium even when the
KMR dynamic with inertia has a singleton stochastically stable set. Suppose that a player obtains
k > 0 instead of 0 when choosing B against C. To escape from B now about N/(11 — k) of one
population needs to mutate so this is the radius of B. Our dynamic selects A as it continues to have

the largest radius among pure strategy equilibria. The set S=B, C,D still contains all stochastically
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stable states. Let S’ = A, B. The radius of S’ is about N/(11 — k) of one population since escaping
from S’ requires this agents to move to C or D; and the co-radius is about N/11. Because the
radius of S’ is larger than its co-radius the stochastically stable states are in S’. Combining this
with the fact that they also lie in .S shows that the unique stable state is B although its radius is
smaller than the radius of A.

Having analyzed the low information dynamic and the high information dynamic with v = 0
and T = 1, we next consider 17" > 1 and v > 0. The basic picture was that A is stochastically stable
in the low information dynamic and the BC'D block contains the stochastically stable set in the
high information dynamic. This remains true for T > 1 and v > 0. When T"=1 and v = 0 in the
high information dynamic we discovered that the stochastically stable set consisted exactly of the
three points B,C, D and that any one of them could become uniquely stochastically stable with
a small payoff perturbation. In the Appendix we use the results of Levine and Modica (2016) to
show that this is still true when 7" > 16.

Example 2. In this example we focus on how the stability of mixed equilibria depends on infor-

mation conditions. Consider the game Ga:

H T P
H 53 35 11
T 25 52 11
P 1,1 1,1 22

This game has three Nash equilibria: one mixed equilibrium ((2H, 2T), (2H, 2T)), the strict
equilibrium (P, P), and the completely mixed equilibrium ((I%H, 1—29T, %P), (%H, %T, %P)). Sup-
pose that there is a population of N > 13 agents of which 3 are committed in each player role. Let
v < 1. We first observe that the set of actions profiles for v-robust states consists of the state in
which learners play (P, P), along with the sets of mixed approximate equilibrium profiles B and
C.23

In the low information model, how much time is spent at these different v-robust states? We
established in Lemma 12 that v-robust states for which learners’ play corresponds to either the set
B or C move along a path of resistance 1 to any other v-robust state. We also know from Lemma 11
that v-robust states in which learners play (P, P) may transition to any v-robust state along a path
of resistance [(N(1+v)—8)/5]. Our characterization of the relative likelihood of different equilibria
(Corollary 1) enables us to conclude that relatively !~ T(NA+2)=8)/5] times as long is spent at the
pure v-equilibrium as at either mixed v-equilibrium. Since N > 13 and all mixed equilibria have a
radius of 1, Corollary 1 says that the pure equilibrium is far more likely than the mixed equilibria

in the long run: The fact that the mixed equilibria have radius one means a single experiment can

)+ & | < v | B33 (H) — 46%(T)) + | < v,a/(P) = 0} and C = {o :
E(26%(H) +46°(T) = &*(P) + 7| < v |72 (367 (H) —4a*(D)) + 5| <

B = {a: |[YFEBa(T) - 23" (H)
)) 1 v N
v, | N3 (46%(H) + 26%(T) — &*(P)) + ﬁ{ < v}, where &7 corresponds to the population play of content agents in j.
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shift the population away from them, and N > 13 implies that once a pure equilibrium is reached
it is relatively likely to stick.

Next consider the predictions of the high information model with memory 7" = 1. We denote
the block {H, T} x {H,T} by HT, and as before P denotes the pure strategy equilibrium. Here we
can easily show from the radius co-radius argument that the HT block contains the stochastically
stable set.2* Unfortunately, the dynamics of best response with inertia inside the HT block are
not terribly plausible. This is because if the inertia parameter A is equal to 0, play will follow a
deterministic best response cycle, meaning that each outcome of the block game associated to the
HT block will have equal weight in the unique limit distribution. That the inertia parameter is
null implies every agent switches to a best response with probability one. Since the unique limit
distribution is continuous in A, this means that the time average payoff received by the agents is
approximately 15/4. However, this implies that the agents’ time average payoff is less than their
minmax payoff, which is not a desirable property of a learning procedure (Fudenberg and Kreps
(1993), Fudenberg and Levine (1995)).

We have shown the resistances between recurrent classes are the same under high information
with short memory and best response with inertia dynamics (see Theorem 4), which in turn implies
that the stochastically stable set and relative ergodic probability ratios of the recurrent classes are
the same. To the best of our knowledge, there is no general characterization of stochastically
stability of mixed approximate equilibria under the best response with inertia dynamic. Still, we
believe it is more typical for the system to be trapped in a best response cycle than to move to a
mixed approximate equilibrium, as in our example.

The high information model with large 7" > 9 exhibits very different behavior than the low
memory case. With high memory, the HT block is still stochastically stable by radius co-radius
argument. Since the HT block contains the unique Nash equilibrium ((2H, 2T), (2H, 2T)), the
stochastically stable set is a subset of v-robust states in a neighborhood of ( (%H , %T), (%H , %T ))-
Importantly, the behavior in the HT block does not exhibit deterministic best response cycles, as
in best response with inertia dynamics, instead it becomes close to equilibrium. This implies as well
that agents do not receive less than the minmax payoff in the long-run, an implausible property of
the T'=1 model.

8 Discussion and Extensions

8.1 Noisy Information

In the analysis so far, there is a fixed and small (relatively to N) number of committed agents,

and agents play all their opponents in round-robin tournaments so there is no sampling error in

2470 see this, the radius of the HT block is at least 2N/3 because if 2/3 of one population is playing in HT block
any of these strategies must earn at least (2/3)(3 + 4/5) while playing P yields at most 4/3. But, the co-radius of
HT block is about N/5 since at least 1/5 of one population has to mutate to escape from P and is the only pure
Nash equilibrium outside of HT block. Since the radius of HT block is larger than its coradius the stochastically
stable states are contained in HT block.
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agents’ observations about whether they are playing a v-best response. In practice, however, there
could be noise about what agents observe either because of sampling or because utility is a random
function of the actions that are played in matches. Our results are not robust if this noise has
probability independent of € because the noise would be the only driving force. On the other hand,
in a noisy environment it seems natural to allow agents average over matches within a period to
push the noise down.

To allow for the possibility that within a period there is some noise we assume that agents
observe a noisy signal of their payoff in each match. In every period ¢, instead of playing round
robin, agents play K random opponents, sampling with replacement for simplicity.?’> We now
assume that there is no trembling, but in any period an agent may draw a sample that is not
representative with some probability, that we denote by e. We then interpret € as arising from
sampling error rather than trembling, and note that ¢ goes to zero as K grows large, resulting in
the dynamics we are studying.?® There are two differences between this model and the one we
analyzed above. First, a discontent agent that is not playing a v-best response can become content
with positive probability. However, as this is probability will be bounded away from 1 the no cost
to staying discontent principle still applies. This follows since one cannot lower the resistance of
the path constructed in the proof by having one agent accidentally become content. Consequently
all the resistance computations are the same as in the original model. Second, in the existing
model it is possible for an agent to tremble onto a dominated strategy, and this is not possible
with trembles arising from beliefs. However as we have made the generic assumption that there are
no weakly dominated strategies (Assumption 1), only strictly dominated strategies, this does not
matter either.

The overall conclusion is that our results about both high and low information learning are
robust to noise within matches, and indeed we may wish to interpret the “trembles” as arising from

sampling error due to that noise.

8.2 Performance of the Learning Rules

While the learning rules we describe seem intuitive given the information we assume is available,
we might expect learning rules not to be used if they perform too poorly. One property that we
would like a learning rule to satisfy is that in a reasonably broad class of environments it “learns”
in the sense of getting it right asymptotically. We conclude by showing that this is the case for
the learning rules we study in environments in which the system spends most of the time at some
approximate Nash equilibrium. Specifically, when aggregate play spends almost all of its time at
a Nash equilibrium, no agent could improve his expected time average payoff by more than v by
using a different learning procedure than ours, given the play of the other agents. This is true

when we allow the alternative learning procedures to use any amount of information, including

25What is important is that K be large in an absolute sense, independent of the size of N, since it is the sample
size K that determines the standard error.

26For a formal result about when this sampling error has negligible impact on the stochastically stable set in a
related model, see Ellison et al. (2009).
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knowing in advance what the agents of the other player are going to do. Note that this is not a

2T since it depends on the fact that the other agents are also using

“universal consistency property,
our learning procedure.
Formally, in a state z agent i’s learning rule gives expected utility U’(z) that depends only on
z. Given the state z there is a unique probability distribution 777 (2)[a™7] over a7 € AN(A77).
Suppose that action distributions a7 of the opposing population are drawn from 7~7(z), that the
agent i observes the outcome a7 and chooses a best response to it. Let V(2) be the corresponding

28 Let G denote the largest difference between any two

expected utility with respect to 777(2)
utilities in the game. Taking expectations with respect to P., and letting S denote the stochastically

stable set we compute

.
lim sup lim sup lE Z(Vi(zt) —Ul(z)) <v+ (1 —us)G.
e—0 T—o0 T —

The reason for this is simply that z; is at a v-stable state except for a fraction of the time (1 — u5),
and when it is at a v-stable state U?(z;) cannot do more than v-worse (for the learners) than any
strategy regardless of how it is learned.

Putting differently, if the agent knew that agents of the other population were going to follow
a stationary strategy for very long periods of time 7 (where 7 depends on €) and that committed
agents in his own population were going to reveal what the agents of the other population are doing,
despite their limited memory and information, the agent could not do much better than either our

low information learning procedure or our high information learning procedure with large T

9 Conclusion

In many settings people have aggregate information about the payoffs and/or behaviors of others,
and may use this information to help select their strategies. Most people also have bounded
memory. We have considered two learning models that incorporate these ideas, and showed that
behavior comes close to approximate Nash equilibria, and related the amount of social information
and memory used to which equilibria we should expect to see in the long run.

We considered a low information social learning model in which agents observe aggregate infor-
mation about how well others are doing, but not how they obtain those payoffs, so agents are not
able to directly imitate successful actions. Here we assume that agents use their limited memory
to keep track of their own actions that recently did well and a “search state” that indicates that
there might be better actions to experiment with. In principle agents might do better by using
more memory, for instance, building a picture of the payoff matrix by remembering past play.
Nonetheless this is likely to be cognitively and computationally costly, and it will work well only if
the environment is stationary. We demonstrated that pure strategy equilibria should be expected

to be seen a larger fraction of the time than mixed strategy equilibria when people cannot easily

27See Fudenberg and Levine (1995).
28No learning rule using any information can do better than this.
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see what actions did well. By way of examples, we compared the predictions of our learning model
to those of the best response with inertia dynamic.

Our high information social learning model supposes that people observe aggregate information
about how well and what others did, which might describe some sorts of consumption and financial
decisions, and that when people experiment they use actions that performed well recently. When
people recall only the last action and approximate best responses, we found that our learning
dynamic predicts the same stochastically stable states as best response with inertia, and so can be
trapped in cycles in the long run. When agents have more memory, cycles become improbable, and
mixed strategy equilibria can be relatively more stable than pure strategy equilibria.

If we think of greater information and greater memory as corresponding to greater sophisti-
cation, we can summarize our results in the following way: in a game with both mixed and pure
equilibria low sophistication leads to pure equilibria, while high sophistication can lead to either
pure or mixed equilibrium depending on the game. Intermediate degrees of sophistication may not
lead to any equilibrium at all.

Which of these models is a better description for how people learn to play Nash equilibria will
of course depend on the information available to the agents and to the cognitive effort they put into
processing it. Neither one should be expected to apply literally to a wide spectrum of situations,
but we hope they will provide a useful complement to the widely-used best response dynamic
in making predictions about long run social outcomes. We believe that it would be interesting
to explore our learning models in controlled laboratory experiments because our results establish

sharp predictions depending on observability and memory.
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Appendix

A Proofs and Auxiliary Results

Lemma 1. The aggregate transition probabilities are given by

( 1 >Dj(xt)+#(7jﬂC($t))

= #RI (1 _
FA S

Pzlz)= > Y [ ¢7a-otV YN —#RI

Tt+1€X (2e41) T,0,R j=1,2

p p

)

EP(T,O’,R,JEt+1 |{L'f)

if 07 is feasible with respect to T7 and x¢, that is, if it is consistent with the play of the non-trembling

content and committed types, and if xi11 € X (z¢41); otherwise Pe(zi41|2¢) = 0.

Proof. The determination of P.(x¢11|z;) has several steps involving interim variables. Recall that
77 denotes the learners of player j that tremble and N7 denotes the non-trembling learners. The
probability of exactly this set of tremblers and non-tremblers is E#Tj(l — e)#N ’. Choose any
assignment of actions to all agents, 0/ € N A7 Such an action assignment has probability defined
as 7 (xzy, T7)[07] that is calculated below. Given ¢/ and the corresponding frequencies oy, we
compute the frequency distribution of payoffs ¢/(c;). For the non-tremblers i € N7 and each subset
RI C N7 of these non-trembling learners who are active, there is probability p#m (1— p)#N I —#R
that exactly this subset of agents is active and updates its type according to this period’s highest
payoff. In summary, we have the interim variables 77,07 and R7.

According to the individual learning rule of the low information model, if i ¢ R’ then Hgt = th.

If i € R/ and ug(aft, a;7) > W (¢ (oy)) — v then 95t+1 = a{t, otherwise 91]"75+1 = 0. We also compute
feasible strategy profiles conditional on 77. Recall that D’(x;) is the number of discontent types
and C(z;) are the content agents in ;. Let o (z;,T7) € A#ET#W\C@)) (A7) be the strategy
profile corresponding to the aggregate play of the committed and non-trembling content types in
x; where the non-trembling content agents play the action corresponding to their type and the
committed types play their committed action. A strategy profile af € AN (A7) in x; is feasible
with respect to T/ if Nad = (#Z7 + #(N7\ C(xr)))a (2, T?) + (DI (z¢) + #(T7 N C(x1)))@* for
some strategy profile a7 € ADj(It)+#(Tjﬂc(xt))(Aj), that is, if it is consistent with the play of the
non-trembling content and committed types. In particular, let @’ (z;) = @ (x4, ) be the strategy
profile corresponding to the aggregate play of contents and committed agents in state z; which
is well-defined since @ (zy, () is independent of x; € X (2), and define A7(z) to be the set of all
corresponding feasible o. Finally, let 7 = (71, 72), R = (R}, R?) and o = (0!, 0?).

We compute the joint conditional probability P(7T,0, R,z +1|z:) of the terminal agent state
2441 and the interim variables 7,0, R considering two sets of events. In the first case, if o7 is
not feasible given 77 and z;, or if Zyy1 & X(2zi41) this probability is zero. Observe that the non-
trembling content agents are playing the action with which they are content and all other learners
are playing uniformly; this implies that IV (z, T7)[07] = (1/# A7)’ @)+#(T/0C(0)) - Then for the

31



other case, the probability is given by

#RI (1 NI AR,

j 1\ D)+ #(TINC()
P(T,0,R il = [] #7 (1 - )# ( )

- »
j=1,2 #AI
Now we can compute P(xii1|x¢) = S ToR P(T,0,R,xit1|xt). O

Lemma 3. If v > 0, there is an n such that if N/M > n a v-robust state exists.

Proof. Since the game is finite it has a mixed strategy Nash equilibrium, and for any v > 0 and any
such Nash equilibrium & € A(A), there is an open neighborhood % of & in which every element is
a v/2 equilibrium. For N sufficiently large there is a grid point o € AN (A) in %, and consequently
for large enough N/M if the learners are content with this grid point it is v-robust. Because M > 1,
the hypothesis that N/M is large implies that N is large as well, so we may choose N/M large
enough that both of these hypotheses are true. O

Lemma 4. There is a 1 such that if N/M > n then if a’ is a strict best response to a pure strategy
a=J € A7 then o/ is a strict best response to all a=3 € AN(A™J) such that a7/ (a=7) > 1~ M/N.
In particular if o/ is the only v-best response to a™ € A™J and v < g then it is a strict best response

to a™7 so the same conclusion obtains.

Proof. The hypothesis v < g implies that v-best responses are strict best responses,?? and for each
pure opponent’s action a7 for which some a is the (unique) strict best response, there is a v > 0
such that a/ is also a best response to any mixed strategy a7 € A(A™7) such that a7 (a™7) > 1—7.
Because A~/ is finite, there is a 7 such that for all v € (0,7%) the previous conclusion holds for all

such best responses a’/, which proves the statement. ]

Lemma 5. In any 0-robust state, the action profile of the learners must be a pure strategy Nash
equilibrium, and any pure strategy Nash equilibrium corresponds to the play of learners in a 0-robust

state.

Proof. If z is O-robust all learners are content and are playing a best response to the unique
a~J(z) € AJ. By Assumption 1, content learners in each population j must be playing the same
best response @/ and so z is pure. This implies that at the 0-robust state a/(a/) > 1 — M/N for
each j , so @/ is a strict best response to a7 and and (a',a?) is a pure strategy Nash equilibrium.

Conversely, suppose that & = (a/,a7) is a pure strategy Nash equilibrium, and that all learners
in each population j are playing @’ and are content. Since @ is strict, by Lemma 4, there is a N/M
sufficiently large such that for each j the action @’ is a strict best response to any a/(a=7) >
1 — N/M, and for such N/M there is a O-robust state for the learners to play a. O

The following result was noted in Section 4.3.

29Note that this is true even for v = 0.
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Lemma Al. When € > 0 the Markov process P, generated by the low-information model is irre-

ducible and aperiodic.

Proof. Pick any state 2 where DJ/(2) = N — #ZJ for each population j. Start with any state
z; and take any agent state x; € X(z;). There is probability e#T’ that all learners tremble,
and #77 = N — #57 | so Di(z41) = N — #ZJ for j = 1,2. Take agH € A’(2) and choose
#4141 € X (2) with an action assignment 67 consistent with a‘z 41 Starting at #;11 there is probability
(1/7‘7ﬁflj)21\7_#51_#52 that all agents play 67. There is probability (1 —;D)QN_#El_#52 that all agents
are inactive so they all stay discontent, hence entering 2.

Next we observe that once at Z there is positive probability of staying there for any finite length
of time. That is, starting at an agent state & € X (2) consistent with 2 there is positive probability
that no agent trembles and is active so that learners will all remain with their contentment and
action. Since starting at any state there is a positive probability of reaching a single state Z where
the system may rest for any length of time with positive probability implies that the system is

irreducible and aperiodic. ]
The next lemma was used in the proof of Lemma 7.

Lemma A2. Ifz = (29, 21,...,2) is a path then there exists a path z = (2o, Z1, . . ., Z;) with Zo = 2o
and Z; = z with 7(z) < r(z), and agent states &, € X (Z;) for 7 =0,1,...,t that have transitions
between Tr_1 and T, in which no discontent agent trembles and every content agent, including those

who tremble, plays the action with which they are content.

Proof. First observe that we can replace the discontent agents who tremble with discontent agents
who play the same way and who are inactive and strictly lower the resistance, so there is a path
to the target with no greater resistance if no discontent agent ever trembles. To show that we
can have every content agent playing the same action, we replace each transition zr, zr411 with two
transitions zr, Zor 11, 2r+1. Let x; € X (z;) together with T;, 0+, R+, xr41 € X (2,41) have resistance
r(z7, zr+1). For the transition z;, Zor 41 choose the same x,, set T = T, and &, such that all content
agents play the action with which they are content, 5{ is consistent with @’(z,, (), and all agents
are inactive. Then 7(z;,Zor41) = 7(xr,Tr41) so that r(zr, Zor41) < 7(Tr,Tr41) = (27, 2741)-
For the transition Zo;41, zr41 take 7~'2JT 1= 0, 69741 = o, and 7~QQT+1 = R, so that the terminal
state is z741 € X(zr41) and 7(Z2r41, Z7+1) = 0 implying 7(Z2r+1, 2741) = 0 and concluding that

T(zTa 227'+1) + T(§27+17 Z‘r+1) < T(Z‘r, ZT+1)' O

Lemma 6. If z = 2 and % is v-robust then there exists a zero resistance path (of length 1) z from

z to Z.

Proof. Let x; € X(z) and 2; = 2. Since z = 2 and % is v-robust we have for each j that Na/(2) =
(N — Di(2))al (z) + DI(z)@ for some a7 € AP’(2)(A7). This implies that A7(2) C A7(2), hence if
ol € A1 (2) then of € AI(2), and o € A(2) implies that all learners are playing v-best responses

in o]. Then there is zero resistance to none of the learners trembling and all learners being active so
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all become or stay content with azt. The resulting agent state x;y; therefore satisfies x4 € X(2)

O

and by construction the resistance of this transition is 0.
Lemma 8. (1) If z is totally discontent there is a zero resistance path to every v-robust state.

(2) If z is proto v-robust but not totally discontent, there is a zero resistance path to a v-robust

state Z; and if z is standard we can choose 2 so that w(z) > w(2).
(3) If z is not proto v-robust there exists a zero resistance path to a state Z with w(z) > w(Z).

Proof. Suppose z; = z is totally discontent and 2 is v-robust. Take xz; € X(z) and action assignment
o; in which of € A7(2). This is feasible since A7(2) C A/(z) for j = 1,2. Suppose next that the
transition does not involve any learner trembling and has all learners being active. Since Z is v-
robust the learners are all playing a v-best response and hence have zero resistance to becoming
content. The resulting state z441 € X(2), so the process reaches Z with zero resistance and showing
part (1).

Now consider a proto v-robust state z; = z that is not totally discontent with w(z) > 0.
Let population j have at least one content learner so w’(z) > 1. Since z is proto v-robust and
w’(z) > 1, one content learner in j plays an action @’ that is a v-best response to a7 (z). Take any
x¢ € X(2), and consider the following zero resistance transition to z’ : In population j, learners do
not tremble and are active, content agents play the same action as in the last period, and discontent
learners play the action @’; in population —j learners do not tremble, play the same actions as the
previous period, and are inactive. For the next transition, we consider two cases. Suppose first
that there is no content learner in population —j, that is w™/(z)= w™7(2’) = 0. By Lemma 4,
there is a M /N such that a7 is a strict best response to o/ (2’) with o/ (a’) > 1 — M/N. Along the
transition from 2’ to 2 suppose in population j nobody trembles and all learners are inactive, while
in population —j all learners do not tremble, discontent learners play a7 and are active. In the
resulting state 2 all learners are content and playing a v-best response, and w(2) > w(z). If instead
w™/(z) = w7 (2') = 1 the content learner in —j is playing the v-best response ¢~/ to a/(2’). Then,
in the transition from 2z’ to 2 assume learners in population j do not tremble and are inactive,
and all learners in population —j do not tremble, discontent agents play ¢~/ and are active. The
resulting state 2 is v-robust with w(z) > w(Z). By construction, unless z was semi-discontent, we
did not increase the width which is claimed in part (2).

Finally, to show part (3) suppose that z; = z is not proto v-robust with w(z) > 0. Then in at
least one population j there is at least one content agent with a{ that is not a v-best response to
some a~/ € A7J(z). Pick any 2; € X(2). There is zero resistance to having population —j play
a7 if no learner trembles, all agents are inactive and discontent learners play the same action, it
does not also add resistance to this transition if one committed agent of player j plays a v-better
response than a’ and play of population j corresponds to some o/ € A’(z). Moreover, there is zero
resistance when all learners of player j do not tremble so the learners in state a’ become discontent.
Then x¢11 € X (2441) with w(zi41) < w(z). O
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For each strict Nash equilibrium profile @ = (a/,a7) € A of the game G define Bja (v) € [0,1]
for player j to be the minimum probability a=7(a™7) such that a’ is not the only v-best response
to the corresponding a7 € AN(A77). Analogously, let pi(v) € [0,1] for player j be the infimum
probability a7 (a=7) such that a’ is not a v-best response to the corresponding a7 € AN(A77).
By Assumption 1 it must be that BZz (0) = p2(0) > 0, so we know that for each Nash equilibrium a
there is a j such that pJ(0) < B}I(O) + BZ(O)' As we work with finite populations, for each x € R
denote by [x] (resp. |z]) the smallest (resp. the largest) integer greater than or equal to x (resp.

not larger than x).

Lemma 10. There is a x and v with N/M >~ and v < x such that for every pure v-robust state
z we have for at least one j that 75 < rl + 1% and for both j that rl > 1.

Proof. Let a € A be any pure strategy Nash equilibrium, and notice that Bi (v) and pl(v) are
continuous at v = 0 because all pure strategy Nash equilibria are strict by Assumption 1. By the
continuity of B{’l and pJ it follows that p (v) < B}l(u) + Bi(u) for one player j. For each pure strategy
Nash equilibrium and each player j, p’(0) > 0, so that for small enough v, p/ (v) > 0. Since there
are finitely many pure Nash equilibria, we may choose 7 so that these conditions are satisfied at
all pure Nash equilibria for all v < 7. Take any v < 7. Define \} = 7(11(1/) + BZ(V) — pl(v) > 0 for
any equilibrium a. Pick M /N such that (N — M )X, > 4, then

[(N = M)py(v)] <1+ (N = M)pj(v) (N = M)p,(v) + (N = M)p2(v) -

<
< LV =M)p,(v)] + (N = M)p? )J -1

Next, for each player j choose N/M so that (N —M)p’ (v) > 2 and notice that | (N —M)p’ (v)] >
(N —M)p!(v)—1 > 1. Then since there are finitely many pure equilibria we pick the largest N/M.
For any pure v-robust state z notice that 74 = [(N — M)p’(v)] and r{ = [(N — M)p’ ( )]. Then
for all v <7 and N/M > W for one player j we have that 7/ < r! 4 72 and for both players j

that rJ > 1 in each pure v-robust state. O

Lemma 11. The radius of a pure v-robust state z is r, = min{?i,?z}, and if Z is any v-robust

state there is a path from z to Z with resistance equal to r,.

Proof. Let z be a least resistance path from a pure v-robust state z to any v-robust state Z. Lemma
7 implies there is a path z = (2o, 21, ..., %) from Zy = z with r(Z) < r(z). Moreover, since Z; = Z
and Z is v-robust there is a zero resistance path from Z; to Z by Lemma 6. Hence the radius of z
may be computed as the resistance of z. Let a’/, a7 be the profile of content actions corresponding
to z.

Suppose for player j 77 < rl + fg and 7 < 7 7. It suffices to consider the case where D7(2,) <
r~J and r/ < D7J(2,) < 7. In population —j content agents are playing a v-best response while
discontent learners need not be. Consider the transition in which nobody trembles, discontents
play a7/ and are active. This transition has no resistance. If discontent agents in population j

do not play a v-best response, are active and nobody trembles; we reach this transition with zero
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resistance. In the former case, since Z, = Z,_1, z; for all 7 the number of discontent learners in
population j can be increased only if D’(Z;) < r~7 increases, and since r—7 > 1 this requires at
least one content agent that is playing a v-best response to become discontent so this transition has
resistance at least one by Lemma 2. This characterizes the basin of z. Next, we show that as long
as we leave the basin we can reach any other v-robust state. Assume D~7(Z;) > 7/, then player j
content agents are not playing a v-best response to some feasible profile of actions a7 € A77(2,).
Let them be active, and no agents tremble. This transition has no resistance. In the following state,
suppose that all the discontent agents in j induce a feasible action so that content agents in —j are
not playing a v-best response. Then discontent agents in j and —j are inactive, content agents in
—j are active to the fact that they are not playing v-best response and there are no trembles. This
zero resistance transition results in a state where all agents are discontent. By Lemma 8 there is a

zero resistance path to any v-robust state. ]

We next provide a proof that in acyclic games with generic payoffs the limit distribution for the

best response plus mutation dynamic with inertia contains only singleton pure Nash equilibria.

Lemma A3. FEvery state that does not correspond to a pure strateqy Nash equilibrium is transient

under best response with inertia dynamic.

Proof. Fix a time t and suppose that the state does not correspond to a pure strategy equilibrium.
There is positive probability that this period all agents of one player, say j, do not adjust their
play while all agents of the other player —j play the best response to the date-t state, and that at
date t + 1 all agents of j play the best response to the date ¢ 4+ 1 state while all agents of player —j
hold their actions fixed. Thus there is positive probability that play in each population corresponds
to a pure strategy from period t + 2 on. Because the game is finite and acyclic, the best response
path from this state converges to a pure strategy Nash equilibrium in a number of steps no greater
than J = #A! x #A2%. There is positive probability that the populations will take turns adjusting,
all of the —j agents adjusting in periods ¢,t + 2,t + 4, ..., and all of the j agents adjusting at
t+1,t+3,t+5,..., so this equilibrium has probability bounded away from 0 of being reached in

2 4 J steps, showing the initial time ¢ state is transient. ]

Lemma 12. If a v-robust state z has w(z) > 2, its radius is v, = 1, and there is either a path
with resistance 1 to every v-robust state Z or to a v-robust state Z with w(Z) < w(z) and either
w(Z) < w(z) or h(2) > h(z).

Proof. By Lemma 8 it suffices to consider paths z from z to any proto v-robust state z’. Because
z is v-robust, all learners are content and play a v-best response. Hence any transition from z to
some other proto v-robust state Z has r(z,2) > 1, since by Lemma 2 at least one content learner
that is playing a v-best response must tremble for the system to leave z. We apply the following
algorithm to construct least resistance paths between v-robust states. In z, identify an action @’ for
one player j that is played by the largest number of learners in supp(@’(z)). Suppose that in the

transition from z to 2’ one content player j agent in state a/ € A7 trembles and become discontent,
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while all the other content agents are inactive and do not tremble. This implies that r(z,2") = 1,
and w(z”) < w(z) by construction. If 2" is proto v-robust , consider the transition from z” to 2"
where the unique discontent learner plays the action @’ # a’ (notice that @ € supp(a?(z"))), is
inactive, and does not tremble, while the rest of the learners do not tremble and are inactive. Thus
2" is v-robust and h(z"") > h(z). Otherwise, z” is not proto v-robust, so there is a zero resistance
path z from 2" to a state Z with w(Z) < w(2”) by Lemma 8. If Z is a proto v-robust state we are
done. If Z is not a proto v-robust state we proceed as in the last step, applying repeatedly Lemma
8, we construct a zero resistance path z’ from z{, = Z to other state z; = zZ with w(z,41) < w(z;)
for t > 7 > 0 until we reach a proto v-robust state Z (which could be totally discontent or not).

By Lemma 8, from a totally discontent state we can reach any v-robust state. O

Lemma 13. If a curb block does not contain all Nash equilibria then there exists a constant k > 0
such that the radius of the set of v-robust states for which content agents play entirely within the

curb block is at least kN .

Proof. Let z be any v-robust state such that the support of a € A(z) is a curb block, and denote
that block by W. Let 2 be any v-robust state such that the support of & € A(2) intersects A\ W.
Define 7 to be the least fraction of learners from population —j that play a=7 € A=7\W ~J such that
any v-best response played by the agents from population j lies in A7\ W7. Let k, = min{x., x2}.
Any 2’ such that for either population D7(z') < kN belongs to the basin of z since the system
returns to z with probability 1. This is because AjT C WY for both j which in turn implies that
discontent agents choose a v-best response, and when active become content, and supp(«) = W. If
DJ(z') > kN for at least one population j, then committed agents in population —j may reveal a
v-better response @~ in the support of &7 so that A;j is not contained in W7 and all agents in
population —j that are active become discontent. Next all discontent agents in population —j play
a=7 ¢ W~J with positive probability and a committed agent in population j may play a v-better
response &’ in the support of & so that all agents with positive probability are active. Then,

discontent agents in population j play @’ in A]f with positive probability, reaching the state 2. [

Example 1 (Continued). We show that when 7" > 16 and v > 0 in the high information
dynamic the stochastically stable set consists exactly of the three points B, C, D.

The block game associated with the BC'D block has seven Nash equilibria: the three pure
strategy equilibria which we labeled B, C' and D, three mixed equilibria ((%C’, ﬁ ), (%C, ﬁ ),
(198, D), (B, £:D)) and (1B, £0), (0B

) 11 ) 11 ) 1T , 171C)); and one mixed equilibrium in which players

randomize uniformly across the B, C' and D.?* Since all v-robust states of this dynamic do not

belong to the same circuit, we have to analyze circuits of circuits. Before doing so we must establish

what the structure of the circuits is.3!

39 Notice that when analyzing v-robust states there is a subset of v-robust states in a neighborhood of each mixed
equilibrium.

31Recall that a circuit is a collection of v-robust states such that we can move from any state to any other through
a sequence that at each state takes an exit that has the least resistance there.

37



First, the three pure v-robust states corresponding to the equilibria B, C and D form a circuit
since we can move from one of these equilibria to the next with resistance equal to the common
radius of these equilibria, which is about N/11.

The mixed v-stable states with w’(z) = 2 for each j have a simple structure. Consider a binary
mixed equilibrium. As weight shifts from one of the two actions for one of the players to the other
until we reach an extremal point at which a further shift causes the other player no longer to be
playing a v-best response for both of his actions. The structure of these equilibria is that of a
square: for each player there is a sequence of consecutive grid points between the two pure actions
for which the opponent’s two actions are a v-best response. The complete collection of mixed v-
robust states with w’(z) = 2 for each j corresponding to the binary mixed equilibrium is then the
Cartesian product of these two sets. Each of these collections of v-robust states corresponding to a
binary mixed equilibrium form a circuit, but these collections are also in a common circuit with the
pure equilibria that we call the “pure/binary” circuit. The reason is that they can be reached from
the corresponding pure equilibria with resistance equal to the radius (about N/11), while within
each collection corresponding to a binary mixed equilibrium there is always a v-robust state from
which we can move to either of the two pure equilibria in the support of the mixed equilibrium
with resistance 1.

The structure of the mixed v-robust states with w’/(z) = 3 for each j is more complicated
since shifts are no longer one-dimensional for each player. However, the least resistance from a
v-robust state in the pure/binary circuit to some v-robust state corresponding to the completely
mixed equilibrium is about N/2 since 1/2 of one population may play the remaining action to make
it a v-best response and appear in the memory set. Since this is greater than N/11 none of the
v-robust states corresponding to the completely mixed equilibrium are in the pure/binary circuit.
Moreover, we can get from any of these mixed v-stable states to the pure/binary mixed circuit with
a sequence of resistances of 1.

Finally, A lies also in a separate circuit. This is because the least resistance from a v-robust
state in the pure/binary circuit to A is about N/2 since if 1/2 of one population is playing in
B, C, D one of those strategies must earn at least (1/2)(6 4+ 1/3) while playing A yields no more
than 5/2. Being greater than N/11 implies that A does not belong to the pure/binary circuit. We
can move from A to any v-robust state in the pure/binary circuit with resistance N/3.

To proceed, we need to compute the modified resistance of going from one circuit to the next
circuit which is the least resistance from one circuit to the next circuit minus the least resistance
path out of the circuit. With these modified resistances we can define circuits of circuits, which
are collections of circuits such that for any pair of circuits in the collection we have a route from
one to the other such that at each step the modified resistance of moving from one circuit to the
next is the least resistance of moving from the one circuit to any other.

As noted, the structure of v-robust states with w’(z) = 3 for each j may be complicated and
involve several circuits. However, this is not relevant for the construction of circuits of circuits.

To move from the pure/binary circuit to any circuit containing such v-robust states requires a
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modified resistance of N/2 — N/11: We can go from a pure v-robust state to any v-robust state
with w’(z) = 3 for each j with resistance of about N/2 while the radius of such a pure v-robust
state is about N/11. Moving on the other direction requires a modified resistance of no more than
1. Hence from Levine and Modica (2016) we know that the stochastically stable set is limited to
the pure/binary circuit, and within that circuit we look for the largest radii, that is, the three pure
equilibria. These form the stochastically stable state.3?

Moreover, if we consider G with perturbed payoffs, where a player obtains x > 0 instead of 0
when choosing B against C, the unique stable state is the pure equilibrium B, as it has the largest
radius in the BC'D block.

32Basically this is the same calculation as the radius modified co-radius, but the circuits require less computations
since they specify what sequence of absorbing states must take place to transition from one place to another; rather
than computing all possible ways.
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