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5.1 Introduction

Bargaining occurs whenever two or more parties can share a surplus if an
agreement can be reached on how the surplus should be shared, with a
status-quo point that will prevail in the event of disagreement. Until
recently, bargaining has been analyzed using the cooperative approach,
which typically consists of specifying a set of axioms that the bargaining
outcome shouid satisfy, and then proving that a solution satisfying these
axioms exists and is unique. More recently, a second approach has
emerged, which relies on the theory of noncooperative games. The typical
paper of this type specifies a particular extensive form for the bargaining
process, and solves for the noncooperative equilibna. Thus, the noncoop-
erative approach replaces the axioms of the cooperative approach with the
need to specify a particular extensive form.

Although this chapter is based on the noncooperative approach, which
we believe has considerable power, we should point out that the reliance
of the noncooperative approach on particular extensive forms poses two
problems. First, because the results depend on the extensive form, one
needs to argue that the chosen specification is reasonable - that it is a
good approximation to the extensive forms actually played. Second, even
if one particular extensive form were used in almost all bargaining, the
analysis is incomplete because it has not, at least to-date, begun to address
the question of why that extensive form is used. This chapter will consider
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the first point of extending the class of bargaining games for which we
have solutions. The second and harder problem, we will leave unresolved.

Fudenberg and Tirole (1983) analyzed the simplest model of noncoop-
erative bargaining that captures bargaining’s two key aspects: Bargaining
involves a succession of steps, and the bargainers do not know the value to
others of reaching an agreement. Their model had only two periods, and
only two possible valuations for each player. In each period, one player
(the “seller”) makes an offer, which the other player (the “buyer”) can
either accept or reject. Each player is impatient and prefers an agreement
today to the same agreement tomorrow. The simplicity of the model
permitted a complete characterization of the equilibria. Several common
perceptions about the effects of parameter changes on bargaining out-
comes were found to be suspect.

However, finite-horizon models are inevitably contrived: Why should
negotiations be constrained to end after a fixed number of periods? More-
over, the specification of two-point distributions for the valuations of the
bargainers is special. Finally, the assumption that the seller makes all the
offers can also be questioned. The present chapter investigates the effect of
relaxing the first two assumptions, and discusses relaxing the third, in the
case of one-sided incomplete information. The seller’s valuation is com-
mon knowledge, and only the buyer’s valuation is private information.

We find that, as long as the seller makes all of the offers, the conclusions
of Fudenberg and Tirole for the one-sided case are essentially unchanged
by allowing an infinite bargaining horizon and general distnibutions: An
equilibrium exists and is essentially unique, and the offers decline over
time. Although many infinite-horizon games have multiple equilibria,
this uniqueness result should not be surprising, since (1) if an agreement
occurs, it occurs in finite time; and (2) the seller’s offers convey no infor-
mation because the seller’s valuation is common knowledge. “Super-
game”-type “punishment strategies” are not equilibna in bargaining
games, because a bargainer cannot be punished for accepting the ““wrong”™
offer. Once an offer is accepted, the game ends. The fact that offers
decrease over time is similarly intuitive. The seller becomes increasingly
pessimistic as each offer is refused. However, neither uniqueness nor
decreasing offers holds with two-sided incomplete information, as Fu-
denberg and Tirole demonstrated in a two-period model. With two-sided
incomplete information, the buyer’s beliefs about the seller depend on the
seller’s offers. In particular, we must specify what the buyer infers from an
offer to which the equilibrium strategies assign zero probability. In such
circumstances, Bayes’ rule is inapplicable, and many different inferences
can be specified. This leeway in choosing the buyer’s “conjectures’ gener-
ates many equilibna.
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The conclusions of noncooperative models of bargaining depend not
only on the extensive form chosen but also, of course, on the specification
of the payoffs. In particular, models of sequential bargaining assume some
sort of impatience on the part of the players. Although most work has
modeled these costs as arising from discounting future payoffs, a few
studies have modeled impatience as fixed per-penod bargaining costs. We
examine the fixed per-period cost specification, and explain why that
specification may lead to implausible equilibria.

The chapter is organized in the following manner. Section 5.2 reviews
some previous work on infinite-horizon bargaining with incomplete in-
formation. Section 5.3 proves that if the seller makes all of the offers, an
equilibrium exists, and is unique if it is common knowledge that the
buyer’s valuation strictly exceeds the seller’s. This section also investigates
the existence of differentiable equilibria. Section 5.4 discusses the case in
which the buyer and the seller alternate making offers, and Section 5.5
discusses the specification of the costs of bargaining. Sections 6 and 7 offer
some brief thoughts about the choice of the extensive form and the specifi-
cation of uncertainty.

5.2 Infinite-horizon bargaining under
incomplete information: The state of the art

Here, we review briefly the models of Cramton (1983a), Sobel and Taka-
hashi (1983), and Rubinstein (1985). (Perry (19824) will be discussed in
Section 5.5.) Very schematically, we can distinguish the following steps
involved in building these models.

Specification of an extensive form. Cramton (1983a) and Sobel and
Takahashi (1983) assume that the seller makes all of the offers, at the rate
of one per period. Bargaining stops only when the buyer accepts the
current offer, then trade takes place at the agreed-upon price. Rubinstein
(1985), on the other hand, assumes that the traders take turns making
offers. These two representations have a number of features in common.
First, the extensive form is given from the outside. As indicated earlier, we
have little to say about this assumption. Second, traders are not allowed to
bargain with other traders; or, equivalently, bargaining with agiven trader
?S not affected by the potential of bargaining with another trader. Actually,
In the three contributions mentioned, traders will never quit the bargain-
Ing process. Not only are they prevented from bargaining with other
Parties, but their costs of bargaining take the form of discounting, and so
they have no incentive to stop bargaining with their (unique) partner.
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Specification of the pavoff structure. We just mentioned that in the three
models, the cost of disagreement comes from discounting. Let 65 and
denote the buyer’s and the seller’s discount factors, respectively. Typi-
cally, if the buyer has valuation b for the object and the seller has valuation
or production cost s, agreement at price p at time ¢ yields utilities
d%b — p) 1o the buyer and %(p — s) to the seller (Cramton). This frame-
work is rich enough to include two interesting cases: (1) the production
cost is already incurred (the seller owns the object before bargaining, that
is, s = 0 (Sobel and Takahashi)); and (2) the traders bargain on how to
divide a pie of a given size (Rubinstein). However, it does not formalize
the cases in which bargaining may stop because of disagreement; for
example, if Vg(1,5) denotes time-f valuation of a seller with cost s when he
quits the bargaining process at time ( — 1) to start bargaining with some-
one else at time ¢, the seller’s payoff is % V(1,5).

Specification of the prior information structure. Sobel and Takahashi
assume that the asymmetric information concerns the buyer’s valuation,
which is known only to the buyer. All the rest is common knowledge.
Rubinstein assumes instead that one of the traders’ discount factors is
unknown. Cramton considers two-sided incomplete information: Both
the buyer and the seller have incomplete information about the other
party’s valuation (or production cost).

Solution.  The three papers look for special types of equilibria instead of
characterizing the equilibrium set. We give only a very brief description of
the restrictions used because these are clearly detailed by the authors and
they differ greatly. Sobel and Takahashi look for an equilibrium that is the
limit of finite-horizon equilibnia.

To this purpose, they compute explicitly a sequence of finite-horizon
equilibria in a simple case, and denve a limit. Rubinstein imposes some
monotonicity conditions on off-the-equilibrium-path conjectures; he
also rules out mixed strategies despite using a two-point distribution for
the private information. And Cramton looks for equilibria in which the
seller at some point of time reveals his information so that the bargaining
game becomes a one-sided incomplete-information game, for which he
takes the Sobel - Takahashi solution.

5.3 Seller makes the offers

We now consider a model in which the seller makes all of the offers and
has incomplete information about the buyer’s valuation. The seller has
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production cost s = 0 (the object has already been produced and the seller
is not allowed to bargain with any other buyer). He has discount factor dg,
which is common knowledge. The buyer’s valuation, b, is known only to
him. The seller has a smooth prior cumulative-distribution function F(b),
with bounded density f(b), with 0 < /< f(b) =/, concentrated on the
interval [ b,b], where b = 0. The buyer’s discount factor, dg, is common
knowledge. A perfect Bayesian equilibrium is a history-contingent se-
quence of the seller’s offers ( p,), of the buyer’s acceptances or refusals of
the offers, and of updated beliefs about the buyer’s valuation satisfying the
usual consistency conditions (i.e., the actions must be optimal given the
beliefs, and the beliefs must be derived from the actions by Bayes’ rule).

The general case

We will show that an equilibrium exists and that it is unique if b strictly
exceeds s. We begin with two lemmas that hold in either case.

Lemma 1 (Successive skimming).  Inequilibrium and at any instant, the
seller’s posterior about the buyer’s valuation is the prior truncated at some
value b F(b)/F(b®) for b < be, | for b = be.

Proof. Lemma | follows from the fact that for any time 7 less than or
equal to 1, if a buyer with valuation b is willing to accept an offer p,, then a
buyer with valuation b’ > baccepts the offer with probability 1. To prove
the latter fact, notice that since b accepts p,,

b—p. =g Vp(b.H,),

where 1',4(b,H,) is the time-(t + 1) valuation of a buyer with valuation b
when the history of the game up to and including tis 7/,. Let us show that

b' — p,> 85 V(b H,),

so that a buyer with valuation b’ accepts p, with probability 1. Since from
time (r + 1)on, buyer b can always adopt the optimal strategy of buyer b,
that is, accept exactly when buyer b’ accepts, then

Va(h' H,) = Ve(bH )< ¥ 040, 4 (b HXO = b),
u=0
where 1 is the index of time periods and «,, 4, (b’ .F,) is the probability
conditional on H, that agreement is reached at time (t + 1 + «) and the
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buyer uses buyer b”’s optimal strategy from time (z + 1) on. Therefore,
Ve(b',H,)— Vg(bH )< b’ — b,

and the conclusion follows by a simple computation.

Lemma 1 implies that the seller’s posterior at any instant can be char-
acterized by a unique number, the buyer’s highest possible valuation b,
By abuse of terminology, we will call b€ the posterior.

Lemma 2. The seller never (i.e., in no subgame) charges a price below b,

Proof.  Weknow that the seller’s equilibrium valuation must be nonneg-
ative, and that expected equilibrium surplus cannot exceed b, so that the
expectation over all possible types of the buyer’s equilibrium valuation
cannot exceed b. Moreover, following the proof of lemma 1, we can show
that the buyer’s equilibrium valuation is nondecreasing and has modulus
of continuity no greater than 1; that is, if b’ > b, then

Va(b') < Vg(b)+ b’ — b

(because the buyer of type b can always play as though he were type b’).
Since the buyer’s equilibrium valuation is nondecreasing and does not
exceed b in expected value, it must be that V4(b) < b, and sowV([;) <2h—
b. This implies that all buyers accept any price below (b — b), and there-
fore the seller would never charge such prices. Knowing that the lowest
possible price is (b — b), all buyers accept prices such that b—p =
Oslb — (b — b)), or p= b — dgb. Proceeding as before, this implies that
for every positive n, all prices below b — 3% b are accepted by all buyers,
and thus the seller never charges less than b.

Now we specialize to the case b > 0. The next lemma shows that if the
posterior 1s sufficiently low the seller charges b, and uses this fact to
establish that the rate at which the seller’s posterior decreases is uniformly
bounded below over all subgames.

Lemma 3. Ifb> 0, there exists N* such that in all equilibria with proba-
bility 1, an offer is accepted in or before period (N* + 1).

Proof.  First, we show that there exists a b* such that if the seller’s poste-
rior is below b*, he charges b. We do this by demonstrating that such a b*
exists if the buyer plays myopically and accepts all prices less than his
valuation. If a seller chooses to jump down to b against a myopic buyer, he
will do so against a nonmyopic one, since nonmyopic buyers are less likely
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to accept prices above b but just as likely to accept b (because no lower
price is ever charged).

Thus, we consider the maximization problem of a seller facing a myo-
pic buyer, when the seller’s posterior is ¢. The seller’s return to charging
price p is at most

P
M(p) = [(F(b’) = F(p)p + o5 f sf(s) dS]/F(h").

Taking the derivative with respect 10 p, we have
M'(p) = F(b®) — F(p) + p/(p)os — 1)

As f(p) is bounded below, for b¢ sufficiently near b, M’(p) is negative for
all p between b¢ and b. Quantity M(p) overstates the “continuation™
payoff if p is refused, and so when b¢ is sufficiently small, a seller with
posterior b¢ would charge b if the buyer was myopic, and a fortiori would
do so against nonmyopic buyers. This establishes the existence of the
desired b*.

Next, we show that there exists N* such that all equilibria end in
(N* + 1) periods. We do this by showing that in N* periods, the seller’s
posterior drops below b*. We claim that there are constants k and w such
that for all initial beliefs b > b*, the seller’s posterior is no higher than
max{b,b¢ — w) after k additional periods. Assume not - then

I m _
Ve b= + 8%b,
* [F(b*) g
where 1’ is the seller’s valuation and the term in brackets 1s an upper
bound on the probability that an offer is accepted in the first k periods. Bl_n
for w sufficiently small and & sufficiently large, the nght-hand side of this
equation is less than b. Thus, we can define N* as

ME—bﬂ] +|]
w int '

and all equilibria must end in (N* + 1) periods.

The proof of lemma 3 makes clear the importance of our assumption
that b > 0. With b > 0, the potential surplus the seller might hope to
extract eventually becomes insignificant compared 1o the “sure thing” of
b, and thus when the posterior is less than b*, the seller settles for b. The
second part of the lemma in turn relies crucially on the first: Without the
“termination condition” at b*, the rate at which the seller’s posterior fel
would not be uniformly bounded below, but would instead decrease with

[X]
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the seller’s posterior. When b is zero, the equilibria will clearly not be of
bounded length, because the seller will never charge zero. This explains
why we prove uniqueness only for b > 0; existence will not be a problem.

Now, we can characterize the unique equilibrium when 5> 0. Let
p(p,.H,_,) be the least (inf) value of any buyer to buy in period 1. An
equilibrium is called “weak-Markov” if f(p,,H,_,) depends only on p,
(which implies that V¢(b,H,_,) depends only on b). Let a(b,H,_, ) be the
seller’s probability distribution over prices in period t. An equilibrium will
be called “strong-Markov” if it is weak-Markov and in addition o depends
only on b¢. In a strong-Markov equilibrium, players’ actions depend
solely on the “relevant” part of the history, namely, the seller’s beliefs and
the current offer.

Strong-Markov equilibria do not necessarily exist, as was discovered by
Fudenberg and Tirole (1983) in a two-period model with a discrete distri-
bution over the buyer’s valuation, and by Kreps and Wilson (19824) in
their treatment of the chain-store paradox. The same forces lead to non-
existence here. Strong-Markov equilibria fail to exist in general, because it
may be necessary for the probability of acceptance, f(p), to be constant
over some interval. The seller’s posterior will be the same after any offer in
such an interval is refused, but in order for §( p) to be constant, the seller’s
next price will have to depend on the current one. As this discussion
suggests, a necessary and sufficient condition for a weak-Markov equilib-
rium to be strong-Markov is that £ be strictly increasing.

We will show that if b > 0, the unique equilibrium is weak-Markov.
The weak-Markov property is unsurprising given that the game ends in
finite time and that the seller’s offers convey no information. When b = 0,
bargaining can continue indefinitely and we have not been able to show
that equilibria must be weak-Markov.

Our proof of uniqueness proceeds inductively. We start by solving
what we will call the “one-period” game, in which we impose the con-
straint that the seller charge b. Recall from the proof of lemma 3 that if the
seller’s posterior is sufficiently low (less than b*), then this constraint is
not binding because the seller chooses b when he is sufficiently pessimis-
tic. In fact, there exists b2 that is the largest value of b¢ such that the seller
charges b when his posterior falls below 2. We then proceed to “work
backward” on both the number of “periods remaining’ and the seller’s
posterior simultaneously. Let p, be the highest price that buyer b? will
accept if he expects the price to be b next period. In the “two-period”
game, the seller is constrained not to charge prices above p,, and thus the
game indeed ends in two periods. Then, we solve for the seller’s optimal
action in the two-period game. The key to the proof'is that if b¢ < b2, the
seller will choose to charge b in the two-period game, and indeed in any
equilibrium the seller must charge b when h¢ < b2 We then proceed to the
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“three-penod” game, and so on. Because we know that all equilibria end
with probability | bytime(N* + 1), weneed only work backward(N* + 1)
steps. At that point, we will have worked out unique strategies such that
(1) the buyer’s decisions are best responses to the strategy of the seller, (2)
the seller’s strategy is an optimal response under the constraint that
the seller’s first-period price be less than p¥°, and (3) the game ends by
(N* + 1). This immediately implies that at most one equilibrium exists.
We claim that 1t also establishes existence. The only way that the com-
puted strategies could fail to be an equilibrium would be if the first-period
constraint on the seller’s action were binding. Holding the buyer’s strategy
fixed, let us consider the seller’s optimization. The seller’s choice set is
compact (in the product topology) and his expected payoff is continuous;
therefore, an optimal choice exists. The argument of lemma 3 shows that
the seller’s optimal choice must terminate the game by (N* + 1), and so
the first-period constraint cannot bind.

After this lengthy overview, we now state and prove our main result.
The statement is only generic, since the seller may have several optimal
first-period offers.

Proposition 1. 1f b > 0, an equilibrium exists and is genenically unique.
The equilibrium is weak-Markov: it is strong-Markov 1t and only if the
buyer’s reservation function f(p) is strictly increasing.

Proof.  See Appendix 1.

We now assume that there is “*enough concavity” in the problem that
the seller’s optimal action at each instant is unique, in order to give a
simpler proof of uniqueness. Moreover, we can show that the equilibrium
is (strong-)Markov. The single-valuedness assumption permits us to use a
simple dominance argument to show that when the seller’s posterior is
below b7, his price is low enough that next period his posterior will be
below bt

To state the single-valuedness assumption, (), we need the following
notation:

dpb

ypy =P " 9%2
B p) =,

W2(be) = max{[F(b°) — F(BXpY]p + S5 F(B(pNb),
P

where $2( p) is the value of the buyer who is indifterent between paying p
now or paying b next period, and W 3(b°) is the seller’s maximal payoff
when he is constrained to change b next period multiplied by the probabil-
ity that the seller’s posterior is below b€, In other words, we work with
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*unconditional probabilities™ rather than conditional ones. This is a re-
normalization and does not change the seller’s behavior.

Let a%(h¢) denote the arg max, which we assume to be unique. Note
that o? increases with b¢, and let b? be uniquely defined by

b2 = max{b® =< b|Wi(b) = F(b)b).
Quantity b? is the highest posterior for which the seller would choose to

charge b now, given that b will be charged next period.
Let #7( p) be such that

B(p) — p =g B(p) — a" (B p))).

B7(p) is well defined and unique if 67! is an increasing function. Con-
sider

Wi = m’le([F(b‘) — F(B(p)lp + os W5 {(B™())).

Let 67(b*) denote the arg max, which we assume to be unique. This is
assumption (S).

Assumption (S). For all n, a™(b®) is single valued.
We have verified that assumption (S) is satisfied for a uniform distri-

bution. The assumption is quite strong; we use it only to be able to provide -

a simpler proof of our result.
Under (§), 67(b°) is an increasing function of b¢. Then, b” is uniquely
defined by

"= max{be = b|WLb?) = W1 \(b°)).

Proposition I’. Under (5), the equilibrium is generically unique and is
(strong-)Markov.

Proof. Lemma 3 proved that there exists b* close to b such that if the
posterior b belongs to [ b,b*], the seller charges b whatever the history.
We now proceed by upward induction on be.

Lemma 4. 1f be€ [ b.b?), then o,(H,) = b.

Proof.  Choose ¢, sufficiently small such that for every b € [b* b2?],
(F(b+ €)= F(b)Xb+ €,) + ok (D)o < F(b + ¢€,)b

and
b* + €, < b2

We claim that if at time ¢, for some history, b¢ belongsto (b*.b* + €, ], the
seller charges b. He can guarantee himself b by offering b.
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Assume that b¢,, belongs to (b,b*]). Then, p,,, = b, and the buyer
accepts p, if and only if his valuation exceeds % p,). Since the seller will
change to b next period and b¢ < b2, the seller charges b this period from
the definition of h2. More generally, the seller will never offer a price
leading to b¢, . in (b,b*]. Alternatively, by offering prices leading to poste-
rors in (b*.b* + €,], he obtains at most

(F(b* + €,) — F(b*)Xb* + €) + 65 F(b*)b < F(b* + €,)b.

Therefore, for any history at time ¢ such that bf€ (b,b* +€,]. p,= b.
B = B2, and Wx(b;) = WL(b?). The same is true by induction for any
bee [b,b?).

Lemma 5. 1If b€ (b0, then o,(1],) = d*(b?).

Proof.  Assume that bs€ (b2,b%), and define €, > 0 sufhciently small
that for every b € (b%,b3),

(Flb+ &) — Fb)b+ &) + oUW Hb+ )< Wb +e)
and
bt +e€, < b3

We claim that if at time ¢, for some history, b¢ belongs to (h2,b? + €, ].
the seller charges a%(b¢). The seller can guarantee himself H'3(h?), as
buyers with valuation exceeding 2( p,) accept p, since they will never face
a better offer than b. Can the seller do better? If he charges p, such that
be,, < b2, then only buyers with valuations exceeding #(p,) accept the
offer since they expect b at time (1 + 1).

More generally, if p,, , is accepted by buyers with a valuation less than
b2, the seller obtains at most B }(b¢, ). Therefore, an upper bound on
what he obtains when his offer leads to a posterior bf,, = b?is (F(b]) —
F(bY))be+ 5 Wi(b?), and hence the seller will not make an offer such
that b¢, , = b2 We conclude that if b¢ € (b2.b* + €,]. p, = o (b}, b =
B2(p,), and W(b?) = Wi(h?) on the equilibrium path. The same reason-
ing applies for b€ (b2 +¢€,, b2 + 2¢,], and so on. until hf=b".

Let us now choose €, such that for every b € (b°,b*),

(F(b+ €) — F(b)Xb+ €) + s Wb+ ¢€) < Hih+e)
and
b3+ €, < b,

The proof that the seller charges a*(bf) when by € (hb%] is the same as
the previous one. That the seller can guarantee himself B'3(b7) is slightly

"
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more complicated to demonstrate. It suffices to show that when the seller
charges p, = a3(b?), a buyer with valuation 3(p,) accepts it. Imagine that
this buyer refuses. Then, b¢,, > p3(p,). which implies that p,,, =
o2(be,,) > o B3(p,)). Hence, buyer #3(p,) will not buy at time (¢ + 1),
since B3(p,) — p, < d5(BX(p,) — Pr+,) would contradict the definition of
$3. Similarly, he would not buy later on, and hence he accepts p, now.

The rest of the proof'is by induction on n. Lemma 3 guarantees that this
induction takes at most (N* + 1) steps. Finally, the equilibrium is
(strong)-Markov since, by construction, p, depends only on the posterior
be.

We would prefer not to invoke the restriction that 5> 0 =:s. One
might expect that the buyer’s valuation could sometimes be less than s
and that such buyers would not enter the bargaining game, but any buyer
whose valuation exceeds s would enter, and thus effectively b = s. For this
case, we can prove that an equilibrium exists by considering a sequence of
games with " — s, showing that there is a limit point of the associated
equilibria, and further that this limit is an equilibrium. With b = s, the
seller will never choose to offer price b, and so bargaining can continue
indefinitely. This lack of an “‘endpoint™ has prevented us from establish-
ing uniqueness for this case.

Proposition 2. When b = 0, a weak-Markov equilibnum exists.

Proof.  See Appendix 2.

Smooth-Markov equilibria

Another approach to solving infinite-horizon bargaining games is to as-
sume that a smooth, (strong)-Markov equilibrium exists, and to try to
compute it from the differential equation resulting from the first-order
conditions for the seller’s maximization.

Let W'g(b°) be the seller’s valuation when his posterior is b, multiplied
by F(b¢). Define

Jp.be B ), Ws(- )= [F(b®) — F(B(pPlp + o5 W B(p)).

Then, o(h¢) must be an arg max of J, and W(h¢) the maximized value. As
in our previous discussion, we see that a is strictly increasing if #is strictly
increasing. When g has “flat spots,” the induced o will not be strictly
increasing and a smooth-Markov equilibrium need not exist.
Differentiating J with respect to b€ and using the envelope theorem, we
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find that
dW
dbe

Maximizing J with respect to p, we then find the first-order condition

F(be) — F[Ba(b9))]
— B (a1 BlabDa(be) — dsal Bla(bHl} = 0. (5.1)

In case the second-order condition is also satisfied, (5.1) and its asso-
ciated f( p) characterize a Markov equilibrium. One such instance occurs
when F(b) = (b/bY" for 0 = b < band m > 0. In this case, F(B)/F(b) has
the same functional form as F, and we can find a smooth-Markov equihib-
rium, with the linear form f(b) = fp and a(b) = ab. It can be venified that
the second-order condition corresponding to (5.1) 1s satisfied, and the
constants ¢ and £ may then be computed to be the unique solution of

(Boy ™+ dm(fo)y=1+m

1 — 64(Bo)
1=4d5 °

= [(b)a(b*).

= (5.2)
from which it follows that 8 > 1 and o < 1. This is the solution obtained
as a limit of finite-horizon games by Sobel and Takahashi (1983), which
was known to be an equilibrium from Fudenberg and Levine (1983). We
have just provided a simpler derivation.

We now comment on a number of features of equilibrium in this
model. First, in all cases a( - ) is nondecreasing so that equilibrium in-
volves gradual concessions. How general a result this is remains to be seen.
Fudenberg and Tirole (1983) show that in a finite-horizon model with
two-sided incomplete information, prices may nise over time. Whether
this can occur in infinite-horizon models is as yet unknown but seems
likely.

It can be shown that when the buyer’s and the seller’s discount factors
converge to |, the seller’s payoff converges to zero. In other words, the
seller loses all ability to price discriminate when the time period goes to
zero (since then both d and d,z approach 1). This result was obtained by
Sobel and Takahashi and is similar to results of Kreps and Wilson (1982a)
1n the chain-store paradox and of Bulow (1982) and Stokey (1980) in work
on durable-goods monopoly. Let us give a rough intuition. The incentive
1o bargain is due to the destruction of the pie by discounting. By making
offers, the seller makes the buyer responsible for destroying the pie if he
rejects the offer. The seller uses this leverage to extort the buyer’s surplus
and, when there is incomplete information, price discriminate. With

"
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short time periods, higher-valuation buyers are more willing to free ride
on lower-valuation buyers. The seller consequently loses his ability 1o
price discriminate.
Finally, note that if V¢(b®) = W(b*)/F(b°),
lim lim Vyb)=0< lim lim Vy(b)=b.
m-—so 55,85 ., 85,65, m—e
Here, m — © means that the seller is nearly certain that the buyer has

valuation b. Thus, in the infinite horizon, it makes a difference what order
we pass to the hmit.

5.4 Alternating offers

Thus far, we have assumed that the seller makes all of the offers, that s,
that the buyer 1s not allowed to make counter offers but can only accept or
reject offers of the seller. This assumption is far from innocuous, espe-
cially coupled with our assumption that only the buyer’s valuation is
private information, which as we suggested seems a good approximation
if the seller owns the object before the bargaining starts, and values the
object only for its eventual sale. If the seller makes all of the offers and the
seller’s valuation is known, the offers reveal no information. If the buyer is
allowed to make counteroffers, in equilibrium the seller must update his
posterior to reflect the information thereby transferred. In particular, we
must specify how the seller revises his beliefs if the buyer makes an offer
that according to the equilibrium strategies is not made by any type of
buyer. Bayes’ rule places no restrictions on such inferences, nor does
Kreps and Wilson’s (1982b) more restrictive concept of a sequential equi-
librium. This leeway can be used to support a multiplicity of equilibna. If
only the seller can make offers, the only zero-probability event that does
not terminate the game immediately is if the buyer refuses a price below b;
however, aslemma 2 illustrated, the seller would never charge such a price
in any equilibrium, and thus what the seller infers from this event is
irrelevant. In contrast, when the buyer can make counteroffers, the seller’s
inferences can change the set of actions that occur in equilibria.

Let us illustrate this point with an example, which has the additional
virtue of providing a form of justification for our seller-makes-the-offers
specification. Specifically, we will describe an equilibrium in which, al-
though the buyer does make counteroffers, these counteroffers are always
rejected by the seller, so that the equilibrium is “‘observationally equiva-
lent’ to one in which the seller makes all of the offers but the time period is
twice as long.

Before we present this equilibrium, recall that Rubinstein (1982)
proved that for the corresponding complete-information game, there
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exists a unique equilibrium. The seller always offers b(1 — d,)/(1 —
5405), the buyer offers ds[(1 — 85)/(1 — 650,)], and these offers are
accepted.

Our example is a “*pooling equilibnum,” in that ail types of the buyer
make the same offers, so that the buyer’s offer conveys no information.
All types of the buyer always offer price zero, which the seller always
refuses. Were the buyer to offer a price other than zero, the seller would
believe that the buyer has type Kb, where K is some large number (such
beliefs are not consistent with the spirit of sequential equilibrium, because
they put weight on types outside the initial support of the buyer’s valua-
tion. Such beliefs can be understood as resulting from trembles by nature
as opposed to the trembles by players which are considered in sequential
equilibrium.) The seller’s offers are made as with one-sided offers, dis-
cussed in Section 5.3, except that the discount factors are 62and 6. The
periods in which the buyer makes offers do not count, and play evolves as
though the seller made all of the offers and the period length is equal to
twice that of the alternating-offers game.

For this to be an equilibrium, it is necessary and sufficient that no type
of buyer wish to charge a price other than zero. However, any unexpected
price causes the seller to believe that the buyer’s valuation is Kb, and thus
the seller refuses p unless p = [Kb(1 — d,)/(1 — d565)}. Clearly, for K
sufficiently large, this will require p = b, which no buyer would offer.

There certainly are many other equilibria. Grossman-Perry (1985)
have shown how to embed the one-sided offer equilibrium into the two-
sided offer structure using beliefs which assign weight only to types in the
interval support of the buyer’s calculation.

5.5 Specification of the-costs of bargaining

The models that we have discussed so far have modeled the costs of
prolonged negotiations as the discounting of future outcomes. This sec-
tion contrasts that form of the costs with two others; fixed per-period
bargaining costs and costs of changing offers.

The assumption of fixed per-period costs is that agreement at price p in
period 1 yields utilities (b — p — cgt)and (p — s — csl), respectively. Fixed
per-period costs were included in Rubinstein’s (1982) complete-informa-
tion bargaining model; in equilibrium, the player with lower cost captured
the entire surplus. However, as pointed out in Fishburn and Rubinstein
(1982), per-period costs are inconsistent with the existence of a “zero
agreement,” for which the trader has no impatience. Fishburn and Ru-
binstein show that any preferences at bargaining outcomes that are
monotonic, impatient, continuous, and stationary can be represenled by
discounting if such a zero agreement is possible. Thus, the existence of a
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zero agreement is of primary importance in choosing a functional form
for time preference.

In the absence of a zero agreement, there are outcomes that are inferior
to “leaving the game,” even when there are known to be gains from trade.
Thus, to avoid violating (ex ante) individual rationality, an “‘exit option”
must be included in the specification of the extensive form. With dis-
counting, the exit option is superfluous in a model with only two traders:
The value of the outside opportunity is normalized to be zero (and,
therefore, even a greatly postponed agreement is preferred to none at all).
Rubinstein’s (1982) paper did not allow an exit option, so that the lower-
cost trader could inflict “‘infinite damage™ on his opponent “relatively”
cheaply. This may partially explain his troublesome conclusions in the
fixed-cost case. Perry’s (1982a) model of bargaining with many sellers
similarly assumes that the buyer cannot leave the game; and thus its
conclusions may be similarly misleading.

The obvious alternative to requiring the players to potentially suffer
arbitrarily large bargaining costs is 1o allow for the possibility of exit,
which ensures the (current) reservation value. Although such an option
can sensibly be added to bargaining models with complete information,
with incomplete information the possibility of exit combined with fixed
costs of continuing yields a trivial equilibrium, as was pointed out in
Fudenberg and Tirole (1983). The equilibrium is trivial because, when an
agent chooses not to exit, he signals that his expected value to continuing,
and in particular his valuation, exceeds the sum of the per-penod cost and
his surplus in the eventual agreement. Consider, for example, the model
of Fudenberg and Tirole (1983), with the addition that the buyer decides
at the end of the first period whether or not to exit. Let &) denote the
type of buyer that is just indifferent between exiting and paying cost ¢z to
continue. Clearly, the seller will never offer a price below &cg) in the
second peniod, and so there is no equilibrium in which buyers choose to
continue. Perry (1982b) analyzes an infinite-horizon, alternating-offers
model, and obtains the same result. The only equilibrium in any subgame
that begins with the buyer making an exit decision is the trivial one that all
buyers leave immediately. Thus, if the seller makes the first move, the
equilibrium is simply that of the one-period game, because everyone
knows that all valuations of buyer will leave at the end of the first period. If
the buyer pays a fee in order to play, the seller will charge a high enough
price that the buyer who had been indifferent about staying in will regret
having done so. Thus, in the presence of incomplete information, the
specification of fixed bargaining costs results in a trivial outcome in which
no bargaining in fact occurs. This is highly reminiscent of Diamond’s
(1971) observation about the effect of fixed search costs, which allowed
firms to charge the monopoly price and thus precluded search.
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Fixed bargaining costs are formally similar to entry fees to participate;
yet entry fees have been shown to be optimal in the theory of optimal
auctions (Maskin and Riley (1980)). The difference is that in auction
theory, unlike bargaining, the seller is allowed to precommit to future
actions, and thus to “promise” a nonnegative expected return to those
who choose to pay the fee. Note that one way out of the dilemma in
bargaining may be to modify the extensive form to allow such payments,
so that the seller can pay the continuation fee.

The second alternative specification of bargaining costs that we wish 10
discuss is one in which it is costly to change offers. Such costs were
introduced to the bargaining literature by Crawford (1981), who assumed
that having made initial demands, bargainers could “back down” at a
cost. More recently, Anderson (1983) studied repeated games with costs
of adjustment. Although costs of adjustment may seem artificial and ad
hoc in the context of bargaining between individuals, they are perhaps
more plausible if the bargainers are agents for others, as in union -
management negotiations.

These are the main alternatives to the discounting formulation that we
have employed. Still other formulations may emerge with the continued
development of the empirical literature on sequential bargaining.

5.6 Why should we study sequential processes?
The thorny question of the extensive form

Here, we offer a few thoughts on the nature of the extensive form. It
should be clear that these thoughts are incomplete. Their only purpose is
to raise some questions we deem important for bargaining theory.

Myerson and Satterthwaite (1983) have studied the optimal negotia-
tion mechanisms between a buyer and a seller. This work has been ex-
tended to situations with multiple buyers and sellers (double auctions) by
Wilson (1982). According to the revelation principle, the optimal negotia-
tion is a revelation game in which the buyer(s) and the seller(s) announce
their characteristics simultaneously. Therefore, it seems that one could as
well restrict attention to static revelation games and never be interested i n
sequential bargaining. A number of considerations actually go against this
first intuition. ‘

For one thing, real-world bargaining is almost always sequenua].
Myerson - Satterthwaite-type revelation games are not played. Thus, 1t
seems that there is scope for sequential bargaining theory. Students of
bargaining theory cannot content themselves with this proof-of-the-
pudding argument. One must ask why such revelation games are
not played, and when the Myerson - Satterthwaite model is internally
consistent.
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Imagine that two parties meet and want to discuss freely the possibility
of a trade that might be advantageous. Their using the Myerson-
Satterthwaite mechanism requires two fundamental assumptions: (| ) the
traders agree to bargain this way, and (2) the traders can commit them.
selves to not ever reopen the bargaining process in case of disagreement. It
is immediately evident that these two conditions are likely not 10 be
satisfied in real-world conditions, for the following reasons.

L. Most of the time, the traders have at least some of their private informa-
tion before meeting. Depending on his information, a trader may want
to use a bargaining mechanism that differs from the revelation game.
One could object to this reasoning by noticing that, because the revela-
tion game is the most efficient game, there could be transfers inducing
the traders to play that game. However, this neglects the fact that choos-
ing a bargaining mechanism itself conveys information and changes the
outcome of the subsequent bargaining game. In particular, accepting the
revelation game is not neutral: It says something about the trader. We
are aware that we are raising a deep question without bringing any
element of answer.

2. It is well known that any bargaining mechanism under asymmetric
information and individual rationality constraints implies inefficiency.
Traders may quit without realizing gains from trade. This is especially
characternistic of the Myerson - Satterthwaite mechanism. Thus, there is

an incentive to renegotiate later. This point is addressed in greater detail
in Cramton (19835).

What, then, is left of the Myerson - Satterthwaite analysis? We think
that this mechanism is of interest for two reasons:

1. From a normative point of view, it gives a lower bound on the ineffi-
ciency associated with voluntary bargaining.

2. From a positive point of view, it may be applied to some special cases.
Imagine, for example, that the parties meet when they have symmetric
information. They know that later on they will acquire private informa-
tion (value of a project, its cost), and that they will have to make a
decision (production) on this basis. In this case, they decide to bargain
according to the Myerson-Satterthwaite mechanism if they have a
means of enforcing the absence of renegotiation in case of disagreement.

i One could think of reputation as an incentive not to renegotiate.

5.7 Specification of the information structure

The literature on sequential bargaining has up to now assumed that the
random variables on which there is asymmetric information are uncorre-
lated. This may be a reasonable assumption in a number of cases. For
example, the seller’s production cost and the buyer’s valuation for the
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biect can be assumed to be independant. Similarly, costs of b_argainin.g
OreJ likely to be uncorrelated between them and with the previous vari-
aables However, there are two channels through which a trader can learn

about his own valuation.

\. Correlated values. Imagine, for example, that the seller owns a used car,
and knows its quality. His willingness to sell the car depends on this
quality. In addition, the buyer’s willingness to buy the_car would depend
on this parameter if he knew it. In this case, the valuallon§ are correlated
and the buyer is eager to learn about the seller’s information not only to
discover his bargaining power but also to assess the value of a deal.

2. Learning from an unknown distribution. Imagine that t.h.cre :‘are.sevc‘ral
sellers, whose production costs are drawn from a probability dlstnbut.lon
that is unknown to the buyer. Imagine further that the buyer can switch
sellers. When the buyer bargains with a given seller, he Ieam; not oply
the specific characteristics of this seller (and therefore a.bo'ut his bargain-
ing power), but also about the other seliers’ cha.raclensucs. Therefore,
the buyer learns about his expected profit if he swn_lchcs to another seller.
Even though the buyer and the seller’s charactensu‘cs may be uncorre-
lated, the buyer learns about more than his bargaimqg power. Anolher
possibility leading to the same effect is the correlation of production
costs between sellers. Indeed, the case of independent draws from a
distribution that is unknown to the buyer is processed like that of corre-

lated draws by the buyer.

An interesting example that combines items (1) and (2) can be found in
the work of Ordover and Rubinstein (1983) on litigation. In their paper,
one of the bargaining parties knows who will win if the dispute is re§olved
in court, that is, if disagreement occurs. On the one hand, the parties are
interested in their valuations after disagreement, and they can learn some-
thing about them before disagreement as outlined in item (2). On the
other hand, the valuations after disagreement are correlated. '

Whereas in the independent-draws model, the only purpose of learning
1$ to discover one’s bargaining power, when draws are conelqted bc?tween
traders the parties learn about their positions afier bargaining with the
current partner whether there is agreement or disagreemcnl. Conse-
quently, during the bargaining process the parties must take into account
two kinds of “‘curses:

L. The celebrated winner's curse in case of agreement. For example. the fact
that the seller of the + .cd car accepts the buyer’s offer may be a bad signal
about the quality of the car.

2. The “bargaining curse.” The seller’s making a low offer may not be good
news to the buyer if the seller knows the quality of the car. In }he un-
known-distribution framework, the seller’s making a high oﬂgr may
signal that the production costs of the other potential sellers are likely to
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be high as well. On the other hand, such learning may not be a curse, but
good news. For instance, in the used car example the seller’s turning
down the buyer’s offer may signal a high quality. Such transmission of
information can easily be embodied in bargaining models. Although we
will not pursue this topic here, it is clear that some new insight can be
gained from it.

5.8 Conclusion

As we stated in Section 5.3, the outcome of bargaining with one-sided
information is fairly easy to characterize if the player whose valuation is
known makes all of the offers. In this case, the price must decrease over
time, and things are generally “well behaved.” With alternating offers,
however, there are multiple equilibria, which are qualitatively very dis-
similar. Thus, the problem of the choice of extensive form is fairly severe,
even when only one-sided incomplete information is being considered. If
both player’s valuations are private information, the situation is even
more complex. We fear that in this case, few generalizations will be
possible, and that even for convenient specifications of the functional
form of the distributions over the valuations, the problem of characteriz-
ing the equilibria will be quite difficult. Cramton (1983a) is a start in'this
direction.

Throughout this paper, because the bargaining costs took the form of
discounting and players had no other opportunities to trade, players had
no incentive to stop bargaining. If traders have alternative bargaining
partners, we would expect them to switch to a new partner whenever they
become sufficiently pessimistic about the valuation of the party with
whom they are currently negotiating. Thus, the length of bargaining be-
tween any pair of traders could be endogeneously determined by the
outside opportunities. Shaked and Sutton (1984) have modeled bargain-
ing with several sellers under complete information. Because the sellers
are known to have the same valuation in equilibrium, traders never quit
bargaining without an agreement if there exist gains from trade. Thus, the
Shaked -Sutton model again predicts that traders will never stop nego-
tiating. In a forthcoming paper, we analyze bargaining with many traders
and idcomplete information to study the effect of outside opportunities
on equilibrium prices and on the length of negotiations.

The noncooperative approach to bargaining theory is still in its in-
fancy. Although much remains to be done, substantial progress has been
made in the past few years. Solving a wider variety of extensive forms may
permit some generalizations to emerge. The problem of the choice of
extensive forms by the players remains open.
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APPENDIX 1
Proof of Proposition 1

we proceed by induction on n. For each n, we construct p", the highest
price the seller is aliowed to charge. The index n will kegp track of the
number of periods remaining: When p < p”, the game will be shown to

end in at most n periods. For n = 1, set sb
P — 00
Wi(be) = F(b9)b,  pAp) = —i=

p'=b =5,

s

o' (b= a'(b¢|p)=b, and bt=0b,

Here, p' = b is the price the seller is required to charge to guaramee_thal
the game ends immediately, and W (b¢)is the §eller’s payofftocharging b
multiplied by the probability that the posterior is below b€, In pt.her words,
we work with “unconditional probabilities” instead of condmona! ones;
the conditional probability of a sale at b is 1, but Fhe unconqmopal
probabilities prove simpler to work with. Note that this renprmahzatnon
does not affect the seller’s optimal behavior. Quantity 8% p) is the reserva-
tion value of the buyer who is just indifferent between p in this penod and
b in the next one. Because the seller’s offers will be nonincreasing and no
less than b, if the seller charges b in this period, buyers must expect bin
subsequent periods. The term 7' ( p) will be the lowest reservation v.all_xe
ofabuyer who accepts p when there will be n subsequent penods, thatis, in
the (n + 1)-period game. Observe that W’} and ' are continuous and
nondecreasing. If p < p', the game is over; if p > p!, it (with some proba-
bility) lasts at least one more period. Value o"(b¢) i§ the conespondenqe
that yields the seller’s optimal choices in the n-penoq game wben he is
constrained to charge no more than p"(when n = 1, this constraint forces
a' to be single valued). Quantity g'(b¢| p) is the expecth valqe of the
seller’s price if the last price was p. And b' is a dummy, which will not be
used; for larger n, b” will be a bound on b that guarantees that the seller
charges no more than p"~! in the next period.

In the n-period game, the seller is constrained to not char,ge more than
p", where pn is chosen such that if p” is charged, the buyer’s reservation
value is at most b"; so the next period’s price is b_elow p"‘_' and, by
inductive hypothesis, the game ends in (n — 1) additional periods.

We will now define W2(be), B*+'(p), p", a"(b?), and a"(b*,p) recur-
sively, and prove by induction that

l. W7 and g7+ are continuous and nondecreasing, and that /{" i_s t:e
unique solution of p € (1 — d5)87(p) + dga"(B"(p)), where o™ 1s the
convexification of o
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2. When aprice p < p”ischarged, the game lasts n or fewer periods, and
so for p = p*, f*!(p) = B"(p);

- When b¢ < b", the seller charges a price less than pr

4. a"(b°) < b*, where o” is nonempty, nondecreasing, and has a com-
pact graph;

5. In the (n + 1)-period game, the buyer with valuation Bt \(p) is just
indifferent between paying p now and waiting one period, and strictly
prefers buying next period to waiting longer;

6. The expected price that the seller charges in period n, a”(b¢| p), is
uniquely determined, given ¢ and the price p charged in previous
period;

7. In any equilibrium, the buyer must play according to S+ and the
seller’s initial price belongs to o**+(5)

[99]

Having by inductive hypothesis proved claims (1) through (5) for the
(n — 1)-period game, let us extend them to the n-period game. First, we
solve for Wiand o™ Letc = bbea given constant. Define the maximiza-
tion problem, denoted J( p.be.B Wy ), as follows:

mpax( PLF(b%) — F(B(p))] + 65 W, (B(p)))

subject to b < p < min{b*,¢).

Since, by inductive hypothesis, B and W will be continuous, and the
constraint set is compact, the arg max correspondence has a nonempty
image and a compact graph. Moreover, the correspondence is nonde-
creasing, since increasing b* strictly increases the gradient of the objective
function. (The correspondence is strictly increasing whenever the objec-
tive is continuously differentiable, but it may be flat if not.)

Let o denote the arg max correspondence, g the expected price charged
by the seller, and & the correspondence whose image is the convex hull of
the image a. Note that ¢ is continuous, is convex valued, and contains .
Finally, note that a(b) = b, whereas for b > b, a(b) < b. _

Now, we can find Wz, p, and g"*!. Consider first J(p,be,8", Wb

Associated with this are g"(b*,b) and a"(be,b). Define b to be the largest
value of b¢ for which p"~' € 6". The key is that when b¢ < b" we can
without loss restrict the seller to not charge more than p"~!; that is,
Jp.bepn Wi by= J pbeB W3 pn=t). However, by inductive hy-
pothesis, when p < p”~!  the game ends in (n— 1) periods, and so
B(p)=p""'(p)and g7~ '(p) < b"~! (from the definition of 57~'), imply-
ing that W2 (B~ p)) = W5 B Y (p)). Thus, when be < b", the n-
period game in fact ends in at most (n — 1) periods, and the behavior we
previously aetermined for the (n — 1)-stage game must still apply. We
conclude that for be < b, g"(be,b) = "~ U(be,b) = 6" '(b*). This argu-
ment holds only for n > 2: for n =2, p"' = b, and the result is trivial.
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must define p”, the bound on the seller’s price that ensures
thal:lﬁz;.twpzriod‘s price ispless than p* ! anq therefore that lhe game end§
in n periods. Thissituation is complicaleq slightly by the possible disconti-
i of 0. Let p"~! be the largest value in "~ '(b") less than or qual o
n:lt‘y and aeﬁne_p" = (1 —dg)b" + dzp" . We claim thatif p < p”in the
f;-pe;iod game, then the next-period price will be less than 1_):'" and l‘he
game in fact ends in n periods. Assume not - the_n‘thc sell:ar S PQSICTOI‘
next period, 87( p), must exceed b". From the definition of p ,Eilns 1:np |e<s
that (1 — d5)B"(p) > p" — dgp"~". Since B"(p) <p =p" a” g'ﬂ (P)}lc;
o"(p") < a" (") = p"'. Yet, by inductive hyp&zth_esn)s, B— (ssaus”‘l
pE (1 —d5)B"(p) + 65"~ "(B(p)), and so (I — J5)B"(p) = P Bg< :
which is a contradiction. This means that imposing thg constraint p < [')n
guarantees that the n-period game in fact ends in n penod.s‘ Later, weltlw1
show that if p < p”, the (n + 1)-stage game ends in n pen(:ds"as ":Ifn -
Given p", we consider the optimizaupn problem J( p,ﬂ[i l}e MR h,p ).
The solution to this problem is a*(b¢), with coan:x null a"(b®). /ts se %WE
above, we know that for b < b" Wi(be)= W ’S'T'(b"), and a”(be, )_—
a"(b€) = a" \(b°), therefore, behavior below b” is not changed by 1n-
1 r of periods. _ .
Crelilsel:tg: lv?: :/(l;?l:lfacszid one period to shqw that g"*'(p)is umggely
defined by the assumed equation. The valuation of the .bpyer who 1's J'u;t
indifferent between paying p in period (n + 1) and waiting must satisty

(B (p) — p) € Sl B+ (p) — G7(B"* (P))]
or
pE (1 — )" (p) + dga™(B" (D)) (A1)

The right-hand side of (A.1)isa cominuops, C(.)nvex-valued‘, stm;ljyll l;l)-
creasing correspondence, and thus has a unique inverse funcllon B [(1 [ ,
which is nondecreasing and has modulus of continuity smaller than
/(1 - . ' ‘
/(Notedﬂtzmal since max{a"(S"*'(p)) < B '(p). the .ch0|ce of guy:(;
B7*Y( p) whether to accept p in period (n + !) or to wait one ([j)enob :;)“-
then buy is unaffected if we replace the anuc:pated_nexl-pe‘no pr;) a(}"
ity distribution over elements of a"([f"*'(p)) by its ixlpeued va lfe | .
Because 6" must lie in 67, equation (A.1) defining " ensures that l 1de
buyer of valuation g7+'(p) is indifferent ‘belween Playmg p nn.l?erlc:o
(n + 1)and waiting to face " next period. I bqyer/)’" (p) were willing "
wait more than one period, then all buyers with Ipwer yalualloqs WOEM
strictly prefer to wait, and there would be no salesin pgnod n. This wo
contradict the behavior that we derived for the n—pf:nod game. ’
Thus, we have verified the inductive hypotheses for k=n. Becausc;t/eI
know that all equilibria end in at most (N* + 1) periods, we know tha
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after (N* + 1) steps, we will have p¥"+1 = b, and the induction is com-
piete. Thus, the first price charged must (1) be an element of g ¥+ '(b) and,
moreover, (2) be less than or equal to p¥**+!. and that thereafter equilib-
rium play is uniquely determined. Thus, if an equilibrium exists, it is
unique up to the seller’s choice of an initial price (or any probability
distribution over aV**!(4)). The argument given before the statement of
proposition | shows that an equilibrium does in fact exist, because given

the functions 8% p), the seller will choose to end thegame in no more than
(N* + 1) periods.

APPENDIX 2
Proof of Proposition 2

To proceed, we need the following lemma.

Lemma 6. The functions B(p)and W(be)derived in the proof of propo-
sition | are equicontinuous.

Proof.  We observed earlier that the modulus of continuity of 8(p) is no
greater than 1/(1 — d,). Recall the definition of Wibe):

)= mfx{[F(b‘) — F(B(p)]p + SW(B(p))).
Now, consider W(b5) — W(bs), where b¢ > bs. Let p, and p, be the
respective maximizing prices. We claim that

W(bT) — W(bs) = (F(b§) — F(bs)Hp,,

because the seller could always choose to offer price p; when his beliefs
were b, and so we have used alower bound on W(b%). However, since the
density, f(b), is bounded by /, we have

Wbs) — W(bs) = bf|bs — bs).

Proofof proposition 2. Consider the sequence of games with buyer valu-
ation densities

oy
by = T—F@n =L
0 ifh<bn

where " — 0 as n — x_ Each of these games has a unique weak-Markov
equilibrium (B W'".a"). Since the family of functions (87, W' ") is equi-
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continuous, it has a uniformly C(_)nvergent’ subsequenc_e conv'crgir'\g' to
continuous (nondecreasing) functions ( §,W'). FO{ notational simplicity,
assume that (8", W) actually converge to (B,.M ). Tl"lere. are now two
distinct concepts of the limiting a. F;rst,. there is g, which is lhe’r gr.g max
correspondence for the seller’s optimization problem J(p,b,3, W ,’b), this 1;
monotonic and piecewise continuous, as al“'/ays. Funhcrmore, since eac j
Jn is Lipschitz continuous in g" and W (in the uniform lopology). J
converges uniformly to J, and from the theorem Qf the maximum, thi
limit points of g are contained in ¢. Thus, at continuity points of o, @
es 10 0. '
Corls‘éil;)gnd, there is the o correspondence, defined uniquely as the solution

of

BH(b) — (1 — S,)b
o5 :

where equality is the equality of sets. R .

Let us show that limit points of ¢ are in 6. Suppose, in fact, that for
some b, s" € a"(b) — p. This is true if and only_if g = ESB(§" + (1 —
Og)b) —> dg(p + (1 — dg)b) = g. From the deﬁpmon of g given pr"e-
viously, p € a(b) if and only if g € g7'(b). Consider the sequence f(g").
Since b = B"(g") and the f" converge uniformly, then f(g") converges to
b. Since g” — g and g is continuous, S(g") —’ﬂ(g), gnd so b= [3(1{), 9:
g€ B~Yb). Thus, we can conclude that at continuity points of o, 0
converges to &, and since g” is the convex hull ofq", that g and o agree
wherever they are continuous. Finally, since o and g are monotonic, they
are continuous except at countably many points, and thus o is t!\; convex
hull of g. Therefore, the optimal seller behavioﬂr given /? and H_ (re., o) is
consistent with playing the mixed strategies in g, which in turn '1r'1d uce the
desired behavior from the buyer, and we indeed have an equilibrium.

ah) =
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CHAPTER 6

Choice of conjectures in a bargaining game
with incomplete information

Ariel Rubinstein
THE HEBREW UNIVERSITY, JERUSALEM

6.1 Introduction

The axiomatic approach to bargaining may be viewed as an gtlempt to
predict the outcome of a bargaining situation solely on the basis of the set
of pairs of utilities that corresponds to the set of possible agreements and
to the nonagreement point. o '

The strategic approach extends the description of a bargaining situa-
tion. The rules of bargaining are assumed to be exogenous, and the solu-
tion is a function not only of the possible agreements but also of the
procedural rules and the parties’ time preferences.

The aim of this chapter is to show that in the case of incom'pl'ete
information about the time preferences of the parties, the bargaiming
solution depends on additional elements, namely, the players’ methods of
making inferences when they reach a node in the extensive form of the
game that is off the equilibrium path. .

The solution concept commonly used in the literature on sequentngl
bargaining models with incomplete information is one of sequential equi-
librium (see Kreps and Wilson (1982)). Essentially, this concept requires
that the players’ strategies remain best responses at every node of decision
in the extensive form of the game, including nodes that are not expected to
be reached. The test of whether a player’s strategy is a best response
depends on his updated estimation of the likelihood of the uncertain
elements in the model. For nodes of the game tree that are reachable, 1t is
Plausible to assume that the players use the Bayesian formula. Off the
€quilibrium path, the Bayesian formula is not applicable. The formu!a—
lion of a game with incomplete information does not provide the dcs'c_np‘—'
tion of how the players modify their beliefs when a *zero-probability

I would like to thank Al Roth and Asher Wolinsky for valuable comments, and
Margret Eisenstaedt, who drew the diagrams.

a99

y -



