F‘Yﬂvamfry, Jounal of H"”v méhire! f&’mu
- O

DETERMINACY OF EQUILIBRIUM IN LARGE-SQUARE ECONOMIES*
by

Timothy J. Kehoe
David K. Levine
Andreu Mas-Colell

William R. Zame#*x

May 1986

Revised: May 1988

*
We would like to thank Darrell Duffie, Jean-Francois Mertens, and
Joseph Ostroy for helpful conversations. This research was supported in

part by NSF Grants SES 81-20790, SES 85-09484, DMS 82-19339, and
DMS 86-02839.

**Department of Economics, University of Minnesota; Department of
Economics, University of Minnesota and UCLA; Department of Economics,
Harvard; and Department of Mathematics, SUNY Buffalo respectively. A large
part of the research reported here was conducted while all four authors were
at the Mathematical Sciences Research Institute, Berkeley.



ABSTRACT

In this paper we argue that indeterminacy of equilibrium is a
possibility inherent in economies with a double infinity of agents and
goods, large-square economies. We develop a framework that is quite
different from the overlapping generations one and that is amenable to
analysis by means of differential calculus in linear spaces. The commodity
space is a separable, infinite-dimensional Hilbert space, and each of a
continuum of consumers is described by means of an individual excess demand
function defined on an open set of prices. In this setting we prove an
analog of the Sonnenschein-Mantel-Debreu theorem. Using this result, we
show that the set of economies whose equilibrium sets contain manifolds of
arbitrary dimension is non-empty and open in the appropriate topology. 1In
contrast, we also show that, if the space of consumers is sufficiently
small, then local uniqueness is a generic property of economies. The
concept of sufficiently small has a simple mathematical formulation (the
derivatives of individual excess demands form a uniformly integrable family)

and an equally simple economic interpretation (the variations across

consumers is not too great).



1. Introductjon

Following Ostroy (1984), we call economies with a double infinity of
agents and goods "large-square." An economy is determinate if equilibria
are locally unique and indeterminate if there are a continua of equilibria.
This paper studies the determinacy of equilibrium in large-square economies.

In the special case of overlapping generations, Kehoe and Levine (1985)
have previously found robust examples of both indeterminate and determinate
economies. This is in contrast to the well known result, due to Debreu
(1970), that with finitely many consumers and commodities "most" economies
are determinate. An account of the available theory may be found in
Mas-Colell (1985) and Kehoe (1988). In this paper we argue that indeter-
minacy is not specific to the overlapping generations model, but is a
possibility inherent in large-square economies.

We develop a framework that is quite different from the overlapping
generations one and that is amenable to analysis by means of differential

calculus in linear spaces. In our setting, the commodity space is a
separable, infinite-dimensional Hilbert space, and each of a continuum of
consumers is described by means of an individual excess demand function
defined on an open set of prices. The advantage of Hilbert space is that we
can use calculus. The disadvantage is that the use of calculus necessitates
that the price domain (and, implicitly, the consumption set) has a non-empty
interior. This means that we are allowing, to some extent, negative prices
and consumption. Consequently, our economies have a different flavor than
in the standard case.

It might be thought, therefore, that the source of indeterminacy is
that we allow a larger price space than usual. Indeed, in our infinite

dimensional setting, we cannot rule out the possibility that robust



indeterminacy requires negative prices. This concern is mitigated, however,
by the observation that in our setting a finite dimensional commodity space
implies generic determinacy even allowing negative prices.

The use of Hilbert space has other implications: the value of the
aggregate endowment is necessarily finite in any equilibrium. Consequently,
every equilibrium is Pareto efficient and fiat money has no role to play.
Since indeterminacy is possible, however, this reinforces the view that
indeterminacy does not depend on the possibility of Pareto inefficiency or
on fiat money.

We introduce a topology on the space of economies that is a natural
generalization of the usual topology in the finite-dimensional setting. In
the latter the set of determinate economies contains an open, dense set. By
contrast, we show in Section 5, and this our first conclusion, that in our
more general setting there are open sets of economies whose equilibrium sets
contain manifolds of arbitrary dimension. Thus, we obtain robust examples
of indeterminacy.

To attain this result, we show that an analog of the Sonnenschein-
Mantel-Debreu theorem is true; that is, any continuous, bounded function
that satisfies Walras’s law and is homogeneous of degree zero can arise as
the (mean) excess demand function of an economy. This is a substantial
extension of the finite-dimensional result because of some subtle converg-
ence issues. With this theorem, we can obtain economies for which the
manifold of equilibrium prices has any prescribed dimension. Recall a basic
difference between finite-dimensional and infinite-dimensional spaces: in a
finite-dimensional space every linear operator that is onto necessarily has
a trivial kernel, while in an infinite-dimensional space there are linear

operators that are onto but that have kernels of arbitrary dimension. We



can use any one of these linear operators to generate an example of
indeterminacy that, by the implicit function theorem, is robust. The idea
is already implicit in Samuelson’s (1958) paper on overlapping generations:
with infinitely many equations and unknowns it is hard to meaningfully say
that they are equal in number.

In Section 6 we look at the other side of the coin, that is, at
determinacy, and obtain our second class of results. From the work of Mul-
ler and Woodford (1984) and of Kehoe, Levine, and Romer (1987) on economies
with finite number of (types of) consumers, one is naturally led to suppose
that, if the space of consumers is sufficiently small, then local uniqueness
should be a generic property. We show that this supposition is correct.

The precise expression of "sufficiently small” is a condition we call C1
integrability. It has a simple mathematical formulation (the derivatives of
individual excess demands form a uniformly integrable family) and an equally
simple economic interpretation (the variation of tastes across consumers is
not too great). The condition is automatically satisfied if there are only
.finitely many (types of) consumers, or only finitely many commodities. 1In
the general large-square framework, the class of economies satisfying this
condition is open (but, of course, not dense) in the class of all economies.
Within this class the determinate economies are dense. The key fact is
that, roughly, Cl-integrable economies are like finite dimensional ones in
that the derivative of mean excess demand has a trivial kernel whenever it
is onto. The Slutsky decomposition of individual excess demand derivatives
plays a key role here, as does the mathematical theory of semi-Fredholm

operators.



Our commodity space is an arbitrary separable infinite-dimensional
Hilbert space H. The inner (dot) product of two vectors h, h' in H is
denoted by h ¢ h', and the norm of the vector h by |[h| = (h-h)l/z.

The restriction to Hilbert space is a limitation, but it facilitates
the application of differential calculus and differential topology. At the
same time, it is general enough to accommodate the points we wish to make.
As is well known, it is often possible, by changing units, to bring into our
Hilbert space framework economic situations that are not naturally described
in those terms. For general facts about Hilbert space, we refer to Dunford

and Schwartz (1958).

2.B. Prices

Fix e € H with [e] = 1. The normalized set of prices is a fixed,
bounded, convex, relatively open set 0 c (p: peEH, pee = 1} such that
.e € 0. Our set of unnormalized prices is U= (Ap: pe 0, § <1 < 1/6)
where 6 > 0 1is a fixed number. Note that § < p*e < 1/6 for each p € U,
and that suppeU "p" <,

Two comments are in order here: First, we have not assumed that the
space H is equipped with an order structure, so that it is meaningless to
speak of positive prices. Even if we were to assume an order structure on
H, however, it could not be the case that the price domain would be contain-
ed in the positive cone of H since the latter has empty interior. Thus,
we are definitely allowing for some non-positive prices. Since the view
taken in this paper is that the determinacy problem is not conceptually

related to positivity of prices, it is natural to follow the most convenient



route and assume an open price domain. The second comment is that we are
not considering prices (and, therefore, neglecting the possibility of equi-
librium prices) belonging to spaces larger than H. For our results on
indeterminacy (Section 5) this is no limitation, but it could conceivably be

for our results on determinacy (Section 6).

2.C. Consumers

We specify consumers as excess demand functions.

Defipition 2.1. A function ¢: U -+ H 1is an individual excess demand

function if:

(i) (Differentiability) ¢: U-H is a C1 function; that is, ¢ is
continuously differentiable;

(i1) (Boundedness) suppeu Is )] < =;

(1ii) (Walras’s law) For all P in U, pet(p) = 0;

(iv) (Degree zero homogeneity) If X > 0 then $(Ap) = ¢(p) for each p,
Ap in U;

T (V) (Weak axiom of revealed preference) 1If P*¢(p’') <0 and

P'*¢(p) < O then ¢(p) = ¢(p').

Assumption (i) has the same interpretation as in the finite-dimensional
case; see Lang (1962) for an introduction to calculus in infinite-dimension-
al spaces, Because H 1is a Hilbert space, there are many Cl excess
demand functions that arise from preference maximization; see Araujo (1985).
Assumption (ii) is made only for convenience, but it is automatically
satisfied if the price domain U is not too large. Assumptions (iii) and
(iv) need no comment. (In fact, (iv) is redundant, since it is implied by
(ii1) and (v).) In Assumption (v), we require the weak axiom rather than

preference maximization because that is all we need for our positive results



in Section 5. The weak axiom is important because of the following familiar

implications.

ropos on If ¢: U-+H is an individual excess demand function,
then for all p in U, the linear operator Df{(p): H -~ H is negative
quasi-semi-definite on (h: h « {(p) = 0). That is, h D¢(p)h <0

whenever h « ¢(p) = 0.

Proof. The proof is exactly the same as in the finite-dimensional case;

see, for example, Mas-Colell (1985; 5.7.3 and 2.4.3). ]

In our Hilbert space framework, the combination of Walras's law and the
weak axiom has strong implications. Suppose, for example, we take H to be
the space 22 of square-summable sequences. Then there is an integer N
such that any individual excess demand function with gi(p) = 0 for
1 <1< N is identically zero on an open subset of U. That is, if the
demand for the first N commodities is identically zero, then demand for
" all commodities is identically zero. To see this, observe that if N is
large enough, then there is a point of the form (pl,pz,...,pN,O,...) e U.
Since U 1is open, it follows that there is an open subset B C U so that,
if p = (;31,132,...,;3N,o,...), P=(0,....Py,1:Pyip:---), and D + p € B,
so is p - p € B. Fix such a p and p.- Since gi = 0 for
i=1,2,...,N, p + ¢(p+p) = 0, so the weak axiom implies either
P+ C(P) = (p+p) » ¢(p) >0 or C(p+p) = ¢(P); similarly, since
P S(p-p) =0, either -p+ ¢(p) >0 or ((p-p) = {(p). Since
P+ ¢(p) >0 and -p » ¢(p) > 0 are not both true, either g(ﬁ+p) - ((ﬁ)
or ¢(p-p) = ¢(p). Finally, O = (p+p) + ((p+p) = p - ¢(p+p) implies

O = -p « ¢(p+p) = (P-P) * {(p+p). Similarly, (p+p) + ¢(p-p) = O.



Consequently, the weak axiom implies ¢{(p+p) = {(p-P). We conclude that
C(p+p) = ¢(p). Fix M > N, and set Py =0 for i~ M. WValras’'s law
implies 0 = pM§M(§+p) - pugu(ﬁ). Consequently, (M(ﬁ) = 0 for any M > N,
and we conclude that ¢(p) = 0 for p € B.

This remark shows, among other things, that the models we study do not
include overlapping generations type models. Therefore, the instances of
robust indeterminacy we construct in Section 5 are not merely thinly
disguised versions of the familiar examples of indeterminacy in that model.
They are, rather, independent specimens of the phenomenon. This lends
support to one of our theses: that the possibility of robust indeterminacy

is not specific to some double-infinity models, but rather is quite general.

2.D. ntegratio d Mea and
Our set of consumers is indexed by the interval [0,1], equipped with
Lebesgue measure. For any given price, demand is a function from [0,1] to
H. To define the concept of mean demand we need a notion of integration for
such functions. 1In this section, we gather the required essentials on

integration of Hilbert space valued functions.

Definjtion 2.2 . The function x: [0,1] - H is peasurable if there is a

sequence of (measurable) simple functions xn: [0,1] = H such that
”x(t)-xn(t)” + 0 for almost every t in [0,1]. The measurable function
x 1is jintegrable if there is a sequence (xn) of simple functions such that

f"x(t)-xn(t)"dt -+ 0, in which case

Jx(t)dt = 1lim fxn(t)dt.

n-*co

(We usually write fx(t)dt instead of f[O 1] x(t)dt.)



A number of comments need to be made. The first is that, because we
have assumed H to be separable, measurability of a function x: [0,1] - H
is equivalent to the requirement that x-l(W) be measurable for each open
subset W of H. The second is that, as it should be, if x 1is integ-
rable, then f"x(t)-yn(t)"dt -+ 0 for every sequence of simple functions
(y,) with "x(t)-yn(t)“ + 0 for almost every t. As a consequence,
limn*wfyn(t)dt - fx(t)dt for any such sequence (yn). Finally, if
x: [0,1] - H is measurable, so is "x(-)":[o,l] -+ R, and x is
integrable if and only if f"x(t)"dt < », This type of integral is usually
called the Bochner integral. It is the most natural infinite-dimensional
generalization of the (scalar) Lebesgue integral, and has most of its good

properties. For example, the dominated convergence theorem holds. We refer

the reader to Diestel and Uhl (1977) for more information.

2.E. conomie ean Exce e o nd u ium

Definition 2.3 An economy is a function z: U x [0,1] = H such that:

(D) for each t, z = z(s,t): U=+ H 1is an individual excess demand
function;

(1i) for each p in U, z(p,*): [0,1] = H is an integrable function.

(iii) SUP_ lz(p,+)|| 1is integrable.

Although no joint measurability of requirement has been imposed on the

mapping z: U x [0,1] - H, it is not difficult to show that joint measur-
ability follows from the conditions we have imposed. Since we have no use
for this fact, however, we omit the proof. Further comments on conditions

(1) and (ii) can be found below in Subsections 2.C and 2.D.



Definitjon 2.4. The mean excess demand z: U - H of an economy z is

defined by

z(p) = [ z (p)at.
oposition Mean excess demand js continuous.

Proof. Fix a price q and a sequence of prices 9, * 9. Then
zt(qn) - zt(q) for each t; moreover by (iii), "zt(qn)" is dominated by
an integrable function of t, and the Lebesgue dominated convergence

theorem applies to show that:

Z(q) = [ z (q)dt = [ lim z,(q )dt = lim [ z,(q )dt = lim Z(q).
- n-—+o n—+wo

Of course, this says that Z 1is continuous at q as desired. ]

The restriction to a finite mass of consumers is not a severe
limitation since what really matters is aggregate (or mean) demand. It is
always possible to rescale so that the mass of consumers becomes finite

while aggregate demand remains unchanged. For example, given countably many

(types of) consumers with bounded excess demand functions xl,xz,..., and
such that 2:_1 "xi(p)" <« for each p, we may replace the ith consumer
(or type) by the interval (2-1,2'i+1] and scale the excess demand function

so that zt(p) - 21xi(p) for t in (2°1,2-1+1]. In the rescaled economy,

mean demand is

© ©

Z(p) = f z (p)dt = }; j Zixi(p)dt - }: x; (p).
1
2

i=1 (271 271+, i=1

With the hypotheses made to this point, mean excess demand need not be

C". It is C1 if, for example, there is a suitably uniform bound on
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derivatives of individual excess demand. As we shall see in Section 6, how-
ever, this is far from being an innocuous technical restriction. Indeed,
the existence of such a bound has strong implications. We prefer, there-

fore, to impose differentiability of mean excess demand as a matter of

definition.
Definition 2.5. The economy 2z has smooth demand (or is a gmooth demand

economy) if the mean excess demand function 2 1is Cl.

The following definition needs no comment.

Definitjon 2.6. The price vector p in U 4is an equilibrium price for the
economy z if Z(p) = 0.

2.F. € Space o m

We denote the set of economies by €. For our purposes, the distance
between two economies should reflect not only the difference between their
levels of excess demand, but also the difference between the derivatives of
" excess demand. That is, two economies 2z, 2z’ should be close if zt(p)
and zé(p) are close on average and th(p) and Dzé(p) are close on

average. There is a natural way to make this informal idea precise.

Definition 2.7. For z , z' in €

d(z,z') = min {1, I[:up "zt(p)-zé(p)" + sup "th(p)-Dzé(p)”]dt}
3 peyU

It is easily checked that this does indeed define a metric on €. Lemma A.1l
of the Appendix implies that the integrand is measurable.
Although this metric topology of € is badly disconnected, it has some

good properties that make it just right for our objectives.
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oposition 3.

(1) If z is a smooth demand economy and z' is an economy with
d(z,2') <1, then z' is also a smooth demand economy. In parti-
cular, the set of smooth demand economies is an open subset of €.

(ii) If (z™) is a sequence of smooth demand economies that converges to

the economy 2z, then 2z is a smooth demand economy and

sup [2(p)-2(p)|| + sup [[DZ"(p)-Dz(p)| - O.
pE€el pEeU

In particular, the set of smooth demand economies is a closed subset

of E.
Proof.
(i) Wrice xt - zt-zt and X = Z-Z so that

X(p) = 2(p)-2'(p) = [(z (p)-z/(P))dt = [x (p)dt.

It suffices to show that X is Cl. To this end, fix p in U, q in H,
and let X be a non-zero real number sufficiently small that p + Aq € U.

As X » 0, the integrand tends (pointwise) to Dxt(p)q. Moreover, the mean
value theorem (see Abraham and Robbin (1967)) implies that the norm of the

integrand is dominated by

lall sup lox @) = lall sup [z (p)-Dz: (P,
peU peU

which is, by assumption, an integrable function of t. The dominated

convergence theorem then implies that
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DX(p)q = lim § (X(p+Aq) - X(p))
A-0

= [ lim(x_(p+rq) - x (p))dt
A0

- [ox_(p)q dt.
Moreover,

Ioxeall <  ox (p)qat

< J lall sup |ox_(p)]ac
peU

< lalacz,z).

This means that X is differentiable and that |DX(p)| < d(z,z’) <1 for

each p. Continuity of DX follows as in Proposition 2.2. This proves (i).

(ii) Since P z, there is an index n, such that d(zn,z) <1 for

n > N, - In particular, (i) implies that z is a smooth demand economy. In

addition, for n > n, and p in U,

(2.1) 12%@) - z)) < [ I23k) - z () [de.

Moreover, for each q in H,

A

Ipz%(®)a - Dz(p)all < [ ID2P(p)a - Dz _(p)alat.

lal § Ipz"(p) - Dz(p)|dt,

IA

so that

(2.2) I0z%(p) - DZ(p)| < [ |D2z"(p) - Dz(0)|dt.

If we take suprema over p in U and combine the inequalities (2.1) and

(2.2), we obtain

sup [|2%(p) - DZ(p)|| + sup [DZ™(F) - DZ(P)| = d(2",z)
peU pev



13

Since d(zn,z) = 0, this gives the desired result. I

3. Regular Equiljbria

Consider a fixed smooth demand economy 2z with mean excess demand
function Z. Define Tp = (h: hep=0). Because Z is homogeneous of degree
zero, DZ(p)p = 0 and, consequently, DZ(p)(H) = DZ(p)(Tp). This implies
that the kernel of DZ(p), which contains p, has dimension at least one.

On the other hand, differentiating Walras’'s law yields

P * DZ(p)q + q » Z(p) = O

for p in U and q in H. Hence, DZ(p)(H) ¢ Tp if Z(p) = 0. Thus,
at an equilibrium price p, DZ(p) maps Tp into itself. The following
definition of regular equilibrium is thus in complete analogy with the usual
finite-dimensional theory. (See, for example, Mas-Colell (1985) and Kehoe

(1988).)

Definition 3.1. Let 2z be a smooth demand economy. The equilibrium price

.P 1is regular if DZ(p) maps Tp onto Tp. The economy is regular if

every equilibrium price is regular.

As the following proposition shows, regular equilibria are well
behaved: the set of nearby equilibrium prices is a manifold that depends

continuously on the economy.

Propositjon 3.1. Let p be a regular equilibrium price of the smooth
demand economy z. Then there is an open set U’ c U, a non-empty,
relatively open set V C kernel DZ(p), an open set W CE, and a
continuous map %: V X W - U' such that:

(i) peU', zeW, and every z in W is a smooth demand economy;
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(ii) If =z 1is an economy in W with mean excess demand Z and
p = ¥(v,z), then Z(p) = 0. Conversely, if Z(p) = 0 for some P
in U', then there is a unique v in V with ¢(v,z) = 0.

(iii) For every z in W, ¥(+,z2): V -+ U' is a diffeomorphism onto

{p: pe€U and 2Z(p) = 0).

Proof. Notice first of all that, since Z 1is a C1 function, there is an

open set U, with p € U, such that |Z(p)| and |DZ(p)| are uniformly

0 0

bounded on UO' It is now convenient to make a normalization. By assump-
tion, there is a vector e in H with “e" = 1 such that p - e > 0 for

all p in U. Set ﬁo = {p: per,p-e-l), and define 2: Te - Te by

2(p) = 2(p) - e + Z(p)e.

(Recall that Te = {h: hee=0).) It is easily checked that 2(p) =0 if
and only if Z(p) = 0 and that D2(p) is onto Te if p 1is a regular
equilibrium price.

Let B denote the Banach space of functions f: ﬁO -+ Te that are Cl,

are bounded, and have a bounded derivative; the norm on B is

Il = sup [£@)| + sup [DE(P)].
per per

By Proposition 2.3, there is a neighborhood €' of 2z in £ on which the

map x: €&’ - B pgiven by

N>

x(z) = 2-

is well defined and continuous.

Set E,. = kernel D2(p) C Te, and let E. be the orthogonal complement

0 1

of EO in Te. (Keep in mind that Te inherits a Hilbert space structure
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from H.) For each p in Te’ we can write p wuniquely as p = Py + 1

where Py € Eo, P € El' We can find relatively open subsets Eé of E0

and Ei of E1 such that Py € Eé, P, € Ei and Eb + Ei c UO'

We now define the function : E6 X Ei X B -+ Te by

'/’(PO,PI,G) - 2(P0+p1) + G(PO"’P]_)

The function ¢ is C1 (see Abraham and Robbin (1967, P- 25)); moreover
¢(po,p1,0) =0 and D0¢(po,p1,0) is onto. (Here, Do¢ is the derivative
of ¥ considered only as a function of the Eé variable; that is,
DO¢(§O,51,O) is the derivative at ﬁo of the function Py ¢(po,§1,0):

Eé -+ Te.) Hence the implicit function theorem (see Lang (1962)) provides an

open neighborhood Ea of ﬁo in Eé, an open neighborhood Ei of ﬁl in

Ei, an open neighborhood J of 0 in B, and a C1 function ¢: E;xJ - Es

such that 5(50,0) - 51 and E(po,G) =P if and only if

(PO»PI,G) € Ei X Ei x J and \b(PO,Pl,G) = 0.

Now choose an open neighborhood W of z in €' such that 2 € J

whenever z € W, Set V = E", U’ = E" + E}, and define y%: V x W - U’ by

0’ 0 1
¥(v,z) = v + £(v,2-2).
It is straightforward to check that ¥ has all the desired properties. i

We distinguish two types of regular equilibria. If P 1is a regular

equilibrium and kernel DZ(p) has dimension one, we say that p 1is deter-

minate; if kernel DZ(p) has dimension greater than one, we say that p is

indeterminate. Recall that kernel DZ(p) always has dimension at least

one. In view of Proposition 3.1 and the homogeneity of mean demand, deter-

minacy of a regular equilibrium price p means that the relative prices at
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P are isolated in the equilibrium set. On the other hand, indeterminacy
means that relative prices at p are not isolated in the equilibrium set.
More generally, if the dimension of kermel DZ(p) is k > 1, then, near
P, the set of relative equilibrium prices is a (k-1)-dimensional manifold.
Notice that Proposition 3.1 also implies that determinacy and indeterminacy
are both robust properties of regular equilibria.

We remark that determinacy does not mean that there is necessarily only
a finite number of equilibrium relative prices. That equilibria are locally
isolated only enables us to conclude that there are countably many equilib-
ria. The problem stems from the non-compactness of the price space. In the
finite case this type of problem can be rectified using an appropriate
boundary condition, but in the infinite case no such solution is 8vailable.

If the commodity space H 1is finite-dimensional (that is, if there are

only a finite number of commodities), then regularity of p means that

DZ(p) maps onto T and hence corank DZ(p) = 1. Consequently,
P

) rank DZ(p) = dim(kernel DZ(ﬁ)) = 1. In other words, if H is finite-
dimensional then all regular equilibria are determinate.
Our goal in the remaining sections is to show that, if H is infinite-
dimensional, then
(i) there is a large class of economies with regular, indeterminate
equilibria;
(ii) there is also a large class of economies for which all regular
equilibria are determinate.
The dividing line between these two classes of economies is uniform
integrability of the derivatives of individual excess demand. The class of
economies possessing this uniform integrability properly includes those with

a finite-dimensional commodity space and those with a finite number of
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(types of) consumers. It constitutes their natural generalization. Within
this class of economies, regular equilibria are determinate and regular
economies are dense. On the other side, the class of economies not posses-
sing this uniform integrability property includes economies with regular
equilibria that are not determinate as well as regular economies with
regular equilibria that are determinate; we do not know whether regular

economies are dense in this class.

4. e ass_o ' d

In this section, we show that the underlying economic structure places
virtually no restriction on the form of the mean excess demand function;
that is, we establish the analog of the Sonnenschein-Mantel-Debreu theorem
(see, for example, Shafer and Sonnenschein (1981)). Consequences of this

result are discussed in Section 5.

Theorem 4.1. Let Z: U=+ H be a continuous, bounded function that is
homogeneous of degree zero and satisfies Walras’s law. Then 2 is the

mean excess demand function of some (integrably bounded) economy z.

Before giving the proof, we make a comment. The argument we give is a
variation on Debreu’s. It is not, however, a straightforward variation.
The rather subtle reason goes as follows: Given an orthonormal basis (bi)

for H, every vector x in H admits a unique decomposition

-}
X = }: Aibi,
=1

i

and this (infinite) sum converges in the norm topology of H. It is not
generally be true, however, that this series converges absolutely; that is,

the sum Enxibiﬂ is not generally be finite because the sequence (A;) of
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coefficients generally is square-summable but not summable. If we try to
express a given function Z, which is homogeneous of degree zero and satis-
fies Walras's law, as an integral of individual excess demand functions by
the familiar Debreu procedure, we are led to decompose Z(p) 1in terms of
an orthonormal basis for T(p): Z(p) = Eki(p)bi(p)- That this series may
fail to converge absolutely will generate an integral expression for Z(p)
that is not convergent. Avoiding this difficulty requires some work.

Before turning to the proof proper, we discuss some preliminary
constructions. Recall our standing assumption that there is a vector e in
U with [e] = 1, and a positive number § such that the price domain U

has the form

U=(xp: pel, §<rc<

=

for some bounded, relatively open, convex subset 0 of {p: pee=1l). Write
Eo for the one-dimensional space spanned by e and E1 for its orthogonal
complement. Let Q be the orthogonal projection onto El, Qx = X -(xve)e.
" Then every x in H has a unique decomposition x = A(x)e + Qx, where
A(x) = x » e is a continuous linear functional.

Since H is separable, we may choose, and fix, a countable dense
subset (ej} of the unit sphere S = (x: erl, [xll=1) of El. We let 21

denote the Banach space of all sequences a = (an) that are summable, in

other words, |[af = Zlanl < «. Define a continuous linear operator
A: 21 - El by setting
©
A(an) - }: anen.
n=1
Lemma 4.2. The operator A maps £ onto E..

1 1
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Proof. That A 1is well defined and continuous is an easy consequence of
the triangle inequality. To see that A 1is onto, let x be a vector in
El; there is no loss of generality in assuming that x| = 1. Since {en}
is dense in the unit sphere S of El’ we can find an index n, with
|x-e | < 1/2; write x, = x - e_ . Next, we can find an index n, such

n, 1 n 1
that "xl-"xlﬂenlﬂ < 1/4; write X, = xl-"xluenl. Continuing in this way,
} in El and a sequence {nj) of indices such that

Then x = eno + 2;_1 "xj"en', so that

we find a sequence ({x

3
o1 xj-"xjuenj.

x is the image under A of the sequence (an) where ay = 1 a = "xj" if

”xj" <23 ana x

n = nj, a = 0 otherwise. Because "xj" - 2-J, the sequence (an) is in

21; in fact, "(an)" < 2. ]

We are now interested in finding a continuous function o*: E1 - 21
such that A(o*(x)) = x for all x € El' The existence of a linear o* is
not guaranteed. Bartle and Graves (1952) show, however, that a (possibly)
non-linear o* does exist. This also follows from the more general selec-
. tion theorem of Michael (1956). Michael'’'s theorem says that there is a
continuous selection from a lower hemi-continuous, closed, convex, non-empty

valued correspondence. Here A'1 is a correspondence satisfying precisely

those properties, and o* 1is the continuous selection.

Lemma &4.3. There is a continuous (possibly non-linear) function
o: E1 - £1 and a positive number p such that o(0) = 0, A(o(x)) = x,

and |lo(x)| < p(1+||x|]) for each x.

Proof: We may clearly assume that the selection o* above satisfies
o*(0) = 0. Since o* is continuous, there is a ball (of radius p >0,

say) on which o* 1is bounded; say "a*(x)" <r for "x" = u. Now define



20

o: E1 - Al by

o(x) = o*(x) if "x" -u,

o = Bl ox it ae el >

Since A 1is linear, it is easy to see that o has the required

properties. 1

Recall that Q 1is the orthogonal projection on E The next lemma

1°

deals with a certain class of individual excess demand functions.

emma 4.4. Let y be a vector in El and let c¢ be a positive real

number. Then the function ¢{(y,c): U + H given by

2
c(y,c><p>-[-§—j§+czﬂ92‘)’7]e+y-
pee

pee

R ) .
is a C individual excess demand function. Moreover,

§(y,e)(p) = ¢(y,c)(q) if and only if q is a multiple of p.

Proof. This is entirely straightforward and left to the reader. We note in
passing that ¢(y,c) actually arises from maximization of the quadratic

utility function

1
u(x) = xXe-e - 3 c"Qx-y"2
and hence satisfies the strong axiom of revealed preference. 1

If ¢: U -+ H satisfies the weak axiom (or, for that matter, the strong
axiom) and the requirement that ¢(p) = ¢(q) omnly if p 1is a multiple of q
then, for any strictly positive function B: U=+ (0,o), the function

B(p)¢(p) also satisfies the weak axiom (or the strong axiom if ¢ does).
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Lemma &4.5. If M, € are positive numbers and ¢: W - [-M,+M] is a

continuous function defined on the open subset W of H, then there are
strictly positive Cl functions WI,WZ:
|¢(X)-[W1(x)-Wz(x)]| < ¢ for every x in U,

U -+ [e/4, M+2¢] such that

Proof. Bonic and Frampton (1966) show that there is a C1 function ¥:U - R

such that [$(x)-¥(x)| < e¢/4 for each x in U. Define £: R -~ R by

£(t) = % for t <0 ;

0y = & ¢ for 0<t<f;
e €

£y =t + = for t>

Set Wl(x) = £(¥T(x)), Wz(x) - Wl(x)-W(x); it is easily checked that Wl,

Wz have the desired properties. ]

With these preliminaries out of the way, we can turn to the proof of

Theorem 4.1.

oof o eorem 4.1. We are going to decompose Z as an infinite sum of
individual excess demand functions; it will then be easy to rewrite this sum

as an integral. Fix a number ¢ with 0<e€<1l. For p in U we have

@©

Z(p) = A(Z(p))e + }: an(QZ(p))en

n=1

where o(QZ(p)) = (an(QZ(p)):_l. Since Z 1is bounded, Lemma 4.3 implies
that on(QZ(p)) is also bounded; so we may use Lemma 4.5 to find strictly

positive C1 functions o ﬂn: U - R such that

o, @2 - [0 ()-8 (m)]] < 27
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for each p in U. Write K = sup |Z(p)||. Recall that ¢ is the

peU I
function defined in Lemma 4.4, and, for each n, set

-n
c_ =2 "¢,
n

G (p) = o (P)E(e ,c )(p),
B (P) = B (P)S(-e ,c)(p).

Keep in mind that, for each p in U, pee > § and that |p| <M for
some M. Straightforward estimates using the triangle inequality and the
inequalities arising from our constructions show that

(4.1) la @) < lo_@z)| + 27 K(1+p) (14245 Lan?s72),

and that “ﬁn(p)" admits the same bound. Since an(QZ(p)) is the nth term
of a sequence that is absolutely summable, we conclude that
Enan(p)" < ® and Z"ﬁn" < «, Hence, we may define

©

Ze) = ) [9,) + AP

n=1

this series converges absolutely. By Lemma 4.4 and the remark following it,
21 is the infinite sum of individual excess demand functions.
We wish to estimate "Z(p)-Zl(p)". We first note that, after

simplifying, we obtain

&.(P) + B (P) = [a (P) - B (P)]e_
pee

pee

n

e (P) - B (P)]

2
1
.
(pee)

c la (p) + B (P)] [

1 2 3
R (P) - Rn(p) - R_(P)



23

The construction of a . Bn guarantees that
1 -
(4.2) IR.(P) - a_(Qzp)| < 27",

That p « Z(p) = 0 (Walras's law), together with the above estimates,
implies

(4.3) IR ()| < 27" [4R(1+p) (142M5 L2572y,

If we combine all three estimates, we obtain
1
lz(p) - z2°(p)| < eC

where C 1is a constant depending on M, p, and §, but not on e¢. Since
¢ 1is arbitrary, we can make "Z(p)-zl(p)" as small as we wish.

Finally, note that, by writing Z(p)-Zl(p) as an infinite sum and
applying the inequalities (4.2), (4.3), and (4.4), we can show that
Z(p)-Zl(p) is the uniformly convergent sum of an infinite series of

continuous functions, and is thus continuous.

To summarize, we have shown how to construct a sequence of individual

- excess demand functions whose sum Z' has the property that HZ-Zlﬂ < €C
and that Z-Z1 is continuous. But then the function Z-Z1 is continuous,
is bounded, is homogeneous of degree zero, and satisfies Walras's law.
Hence, we may simply repeat the above argument to obtain another sequence of
individual excess demand functions with sum 22 such that

"(2_21)_22" < 1/2 ¢C. Continuing in this way, we obtain a sequence of

individual excess demand functions; the sum of the nth sequence is z" and

n
Iz(p) - }C | < (172" ec.
jul

-]

Hence, 2Z = Ej_lZJ, and this series converges uniformly. After rewriting
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the double sequence of individual excess demand functions as a single
sequence {zi), we see that Z(p) = Z;_l zi(p). Moreover, our construc-
tion shows that this series converges absolutely. (The crucial inequality
is (4.2).)

It remains only to rewrite this sum as an integral. If we define

z (p) - 2nzn(p) for 2 %<t < 2-(n+1),
then
[ -}
[2e®ee = ) 2 o) - 2w
n=1
as required. i
5. e t a a

One of the implications of Theorem 4.1 is that economies with regular,
indeterminate equilibria are very easy to produce if H 1is infinite-
dimensional. In fact, we can easily exhibit economies with any prescribed
" degree of indeterminacy. The existence of such economies reflects the fact
that on any infinite-dimensional Hilbert space H there are always continu-
ous linear operators S: H -+ H that are onto but have kernels of any
prescribed dimension. To construct such operators in our separable frame-

work, fix an integer k > 1 and an orthogonal basis (e,} for H. Every

3
x in H has a unique expression x = E;_l ajej. We define Sk: H -+ H by
- ] - ]
S a.e. | = e..
k[z JJ] Z“j-kj
j=1 J=k+1

If H is the space !2 of square-summable sequences and (ej} is the

usual orthonormal basis, the operator Sk just shifts every sequence
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backward by k steps; that is,

Sk(al,az,...) - (ak+1,ak+2,...).
It is evident that the operator Sk is onto and has a k-dimensional kernel.
To obtain indeterminate, regular equilibria, all we need to do is to

turn such linear operators into excess demand functions.

Theorem 5.1. Assume that the commodity space H is infinite-dimensional
and let k be a positive integer. Then there are non-empty open sets

U' €U and W c € such that, for each economy z in W, the set of
equilibrium prices of z in U' is & non-empty k-dimensional manifold and

consists entirely of regular equilibria.

roof. Let e be the distinguished unit vector in the price domain U,
and write El for the orthogonal complement of e. We can write each
vector x in H wuniquely as x = x +x1, where Xg = (x+e)e and

0

x1 = x-(x+e)e belongs to El. let A: E1 - E1 be any continuous linear
- operator which is onto and has a (k-1)-dimensional kernel. We now define a

function Z: U -+ H by

1 1
Z(p) = pee Ap; - —=— (py*Ap;)e.
(pee)

Since pee > § for each p in U, Z 1is well defined; it is easily seen
to be bounded, Cl, homogeneous of degree zero, and to satisfy Walras'’s
law. By Theorem 4.1, there is an economy z that has Z as its mean
excess demand function. Since Z(e) = 0 and DZ(e)q = Aq1 for each q in
H, e 1is a regular equilibrium price of the economy z. Since kernel A

is a (k-1)-dimensional subspace of E and DZ(e)e = 0, it follows that

1

kernel DZ(e) 1is a k-dimensional subspace of H. Proposition 3.1 now



26

provides the required open sets U’', W. i

6. Cl-:ntegrable Economies and Determinate Equilibria

In this section, we shall see that the picture obtained in Section 5
changes dramatically if we impose an additional requirements, that the
derivatives of individual excess demand should have finite mean. We call
this C1 integrability. Indeed, the behavior of Cl-integrable economies is
qualitatively very much like that of finite-dimensional economies. Of
course, this means that C1 integrability is not a minor technical condition.
Rather, it is the mathematical expression of a simple underlying economic
requirement, that the family of individual demand functions represented in
the economy not be too diverse.

6.A. C1 nt b t

By Lemma A.1 in the Appendix, it follows that the function
t - suppeU "th(p)": (0,1] » [0,»] is measurable. We now consider

strengthening this condition:

Definition 6.1. The economy z is C'-integrable if
J sup Dz _(p)]a.
peU

We denote the set of Cl-integrable economies by €%,

Observe that the economy 2z is certainly Cl-integrable if there is a

constant M such that uth(p)" <M for each p in U and t in [O0,1].
Proposition 6.1.

(i) If the economy 2z |is Cl-integrable then

f sup “zt(p)"dt < o,
peU
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(ii) If the economy z is Cl-integrable, then it has smooth demand.

Moreover, if p € U and q € H, then

DZ(p)q = [Dz (p)q dt.

(iii) The set €* of Cl-lntegrable economies is a non-empty open and

closed subset of E.

Notice that, in cases where H is finite-dimensional or where the
population falls into a finite number of types, the C1 integrability

condition amounts to a minor technical condition of a standard variety.

Proof.

(1) Fix a price p* in U and t in ([0,1]. For any p in U, write
P = p*+(p-p*). Apply the mean value theorem (Lang (1982)) and the triangle
inequality to conclude that

lz.®1 < lz,®| + lp-p*| sup Ipz 3.
peU

" Since U 1is bounded, there is a constant C such that |p-p*| < C for all
P in U. Ve then obtain

[ sup "zt(p)"dt < f"zt(p*)"dt +C [ sup “th(ﬁ)“dt.
peU

The first of these integrals is finite (because the mapping T =+ zt(p*) is
Bochner integrable) and the second is finite by assumption. This is (i).
(ii) This follows by exactly the same argument as Proposition 2.3(i).
(1ii) That €* 1is open and closed follows exactly as in Proposition 2.3.

Since the zero economy is Cl-integrable, €* is not empty. 1
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6.B. emi - h s
In the next subsection, we shall spell out the important consequences
of Proposition 6.1 for the determinacy of regular equilibria. 1In this

subsection, we collect some mathematical notions and facts we shall need.

Definition 6.2. The continuous linear operator T: H -+ H has finite rank

if range T is a finite-dimensional subspace of H. The operator T is

compact if the closure of the image of each bounded set in H 1is compact.

Fact 6.1. The continuous linear operator T is compact if and only if it

is the norm limit of finite rank operators (Dunford and Schwartz (1958)).

Fact 6,2. For each t in {0,1], 1let At: H-+ H be a continuous linear
operator. Assume that

(i) for each x in H, the map t - Atx is integrable;

(ii) f"At"dt < =, (Notice that measurability of t = "At" follows as in

Lemma A.1.) Then the mapping A: H - H given by

Ax - fAtx dt
is a continuous linear operator, and [A] < f"At”dt. Moreover, if each A
is a compact operator, so is A (Berger and Coburn (1985, Lemma 12)).
Definjtion 6.3. Let T: H -+ H be a continuous linear operator. The
corange of T 1is the subspace

corange T = (h: h € H and h+Tx = 0 whenever x € H}.

The operator T 1is gemi-Fredholm if range T is closed and at least one of
the subspaces, kernel T, corange T is finite-dimensional. In that case, we

define the index of T by

index T = dim(kernel T) - dim(corange T).
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The index is an integer, +« or -«». We denote the set of semi-Fredholm
operators of index s by 7S(H). The space of all bounded linear operators
on H 1is denoted by X(H).

If the operator T 1is semi-Fredholm and both ﬁhe kernel and the
corange of T are finite-dimensional, the operator T is called Fredholm.
Equivalently, an operator T is Fredholm when it is semi-Fredholm of finite
index. Note that, if H 1is finite-dimensional, then every operator on H

is Fredholm of index zero.

Fact 6.,3. The set TS(H) of semi-Fredholm operators of index s is open

in the space Z£(H) (Atkinson (1951) and Yood (1985)).

Fact 6,4. 1If A 1is a semi-Fredholm operator of index s and K 1is a
compact operator, then A+K 1is a semi-Fredholm operator of index s

(Atkinson (1951) and Yood (1951)).

Fact 6,.5. If A 1is negative quasi-semi-definite (that is, x+Ax < 0 for

' every x) and semi-Fredholm, then index A = 0.

Proof. For each ¢ > 0, set Ae = A-¢I. then Aex = Ax-ex for each x,
and XA < -e"x"2 for each x. This implies, in particular, that

”AexH 2 elx| for each x; hence A_ is an invertible operator, and thus is
semi-Fredholm of index zero for each ¢. Since A = 1:Lme_’o Ae and A is
semi-Fredholm, Fact 6.3 implies that index A = 0. '

6.C. Determinacy of Regular Equilibria

Proposition 6.1 shows that, for a Cl-integrable economy, the derivative
of mean excess demand is the integral of the derivatives of individual

demand. This enables us to use the facts about compact and semi-Fredholm
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operators, together with the basic implication of the weak axiom (Proposi-
tion 2.1), to prove that regular equilibria of Cl-integrable economies are
determinate.

The idea of the proof is as follows: Because of the weak axiom the
derivative of individual excess demand function is a finite rank perturba-
tion of a negative quasi-semi-definite operator. The aggregate of negative
quasi-semi-definite operators is negative quasi-semi-definite; the aggregate

~of finite rank operators is compact. Consequently, at a regular equilibrium
the derivative of mean excess demand is semi-Fredholm of index zero. Since
regularity means that the corange is one-dimensional, the kernel must also

be one-dimensional. Hence the equilibrium is determinate.

Theorem 6.2. Let z be a Cl-integrable economy and p & regular

equilibrium price for z. Then p is determinate.

Proof. Regularity of the equilibrium price p means that the range of
DZ(P) coincides with Tp = (h: heH, hep=0), which is a closed subspace of
H. Moreover, the corange of T is the subspace spanned by p, which is

one-dimensional. Hence DZ(p) 1is a semi-Fredholm operator and

index DZ(p) = dim(kernel DZ(p)) - dim(corange DZ(p))

= dim(kernel DZ(p)) - 1.

Since p 1is determinate exactly when dim(kernel DZ(p)) = 1, the theorem
follows if we can show that index DZ(p) = 0. To do this, we show that
DZ(p) 1is the sum of two negative quasi-semi-definite operators and a
compact operator.

Proposition 6.1, implies that, for each h in H,

DZ(p)h = [ Dz _(p)h dt.
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let J = {t: ¢te€{0,1], zt(p)#O), J’ = [0,1]\J. Since ¢t -~ zt(p) is measur-
able, both J and J’ are measurable sets. We define continuous linear

operators A,A': H -+ H by

Ah = [ Dz (p)h dt,
J

A'h = | Dz _(p)h dt.
J'

For each t in J’, zt(p) =0, so h zt(p) = 0 for every h in H.
Hence, by Proposition 2.1, h -« th(p)h €0 for T in J' and h 4in H,
whence
heA'h = [ heDz_(p)h dt < 0.
J
In other words, A' {is negative quasi-semi-definite.

Now, for each t in J, zp(t) % 0. If h e H, set

h-zt(p)
Ph = — zt(p).
Iz @

ch =h - Pth'

so that Pt 1s the orthogonal projection onto the space spanned by zt(p),
and ch is the orthogonal projection onto the orthogonal complement of
this space; note that Pt+Qt = I, the identity operator. For each h in

H, we have:

h  [Q(Dz,(p))Q.]h = (Q.h) * Dz (p)(Qh) < O

since Q_  is symmetric and ch is orthogonal to zt(p). In other words,

t

the operator Q_(Dz_(p))Q is negative quasi-semi-definite for each t in
t %t t g q

J. Since Pt+Qt = 1, we have



32

Dz (p) = Q,(Dz_(P))Q, + P (Dz (P)) + Q (Dz_(p))P,.

Since Pt is a rank one projection, the second and third operators on the
right-hand side have rank at most one.

Observe that

2
le @z p1Q. |l < Iz ()]l lo I” < Ipz (o)

since Q_ 1is an orthogonal projection. Hence, we may define operators

t
B,K: H-+H by

Bh = [ Q.(Dz_(p)Q.h dt,
J

Kh = [ [P (Dz_(P))h + Q_(Dz _(p))P ]h dt.
J

Fact 6.2 implies that B 1is a continuous linear operator and K 1is a
compact, continuous linear operator. Because Qt(th(p))Qt is negative
quasi-semi-definite (for each t in J), we see as before that B is also
negative quasi-semi-definite.

We have thus obtained the decomposition
DZ(p) = A’ + B + K,

where A’ and B are negative quasi-semi-definite and K is compact.
Since A'+4B = DZ(p)-K, and DZ(p) is semi-Fredholm, so is A'+B. Since
A'+B 1is negative quasi-semi-definite semi-Fredholm, Fact 6.5 implies that
index(A'+B) = 0, so, by Fact 6.4, index DZ(p) = index(A'+B) = 0, which is

the desired result.

6.D. ensity of ular Economies
We conclude by showing that, within the class of Cl-integrable

economies, the regular economies are dense.
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Definition 6.4. Let V be an open, connected subset of H and f: V- H
a C1 function. The vector h in H 1is a regular value of f if Df(x)

is onto for every x with £(x) = h.

Fact 6,6. Let V be an open, connected subset of H and let f: V = H
be a C1 function with the property that Df(x) is Fredholm of index zero
for each x in V. Then the set of regular values of f 1is dense ir H.

(See Smale (1965); this is a consequence of Sard’'s theorem.)

eor 6.3. The set of regular Cl-integrable economies is dense in the

set of all Cl-integrable economies.

Before giving the proof of the theorem, we establish an important
technical lemma. It allows us, without loss of generality, to assume that

the derivative of mean excess demand is Fredholm of index zero.

lemma 6.4. If z is a Cl-integrable economy and € > 0 then there is
a Cl-integrable economy z* such that d(z,z*) < ¢ and DZ*(p) is

" Fredholm of index 0 for all p in U.

Proof. The idea of the proof is that DZ(p) is the sum of a negative
quasi-semi-definite and a compact operator as we showed in the proof of
Theorem 6.2. By changing the demand of a small subset of consumers, we can
ensure that the negative quasi-semi-definite operator is actually negative
quasi-definite, and consequently, non-singular. This implies that it is
semi-Fredholm with index zero, and consequently, so is DZ(p) by Fact 6.4.
By our standing assumption, there is a vector e in U such that
He" = 1 and a positive number § such that pee > § for each p in U.

Again let Eo be the one-dimensional space spanned by e; let E1 be its
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orthogonal complement; and let Q be the orthogonal projection onto El.

Define the C1 function ¢: U -+ H by

lap|? 1
C(p) = e - Qp.
2 (p)? 2)(p)

It is easy to see that ¢ is an individual excess demand function. 1In
fact, ¢ 1is the excess demand function arising from the utility function
u(x) = A(x) - "Qx"2 and initial endowment e. This construction is the
same as that in Lemma 4.4, with y = 0.

Since U 1is a bounded set and A(p) = p » e > § for each p in U,

sup "{(p)" is finite. Ve claim that the derivative of ¢ has the

peU
following properties:

(1) sup [Dg(p)] < w;
peU

(i1) QD¢(p)Q = - 3%57 Q, for each p in U.

The easiest way to see that these properties hold is by direct computation.

Choose an orthonormal basis €j:€pr - for El; then every x in H may
be written uniquely as
©
X = A(x)e + }: Ai(x)ei
i=1
where Al(x), A2(x),... are real numbers. Then
©
leel? = ) A @),
i=1

so that
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EZ (p)2 ®

i=m] 1
((p) = ————— p - —— }C A, (pe,.
22(py 2 22(p) L 1(Pley

Hence, if we write the matrix for D{(p) relative to the orthonormal basis

e,el,ez,... for H, we obtain
r ) 1
-Zx, (p) A @) A, (p)
A am? ap?
Al(p) o 0
2 2x(p)
D¢ (p) = Alp) .
A,(P) o o1
»\(p)2 22 (p)

which yields (i) and (ii).
We now observe that, by assumption fpeU "th(p)Hdt < «, Consequently,
.by Proposition 6.1(i), we can find a positive number a so small that

0 <a<1l1l/2 and

J  Usup Jz ()] + sup Dz (p)1de < e/2.
[Ova] PGU pGU

We define the economy by

IA
R

z¥(p) = cf(p) for 0<t

z:(p) - zt(p) for a<tgl1

where ¢ is a very small positive constant. It is evident that z* is a
Cl-integrable economy and that d(z,z*) < ¢ if ¢ 1is sufficient small.
We claim that DZ*(p) is a Fredholm operator of index zero for each »p

in U. To see this, set
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W) = [ z (pat
[a,1]

and note that Z*(p) = ac{(p)+W(p), so that DZ*(p) = acD{(p)+DW(p).

Hence,

Q(DZ*(p))Q = acQ(DS(p))Q + Q(DW(P))Q

ac

) Q + Q(DW(p))Q.

As we have shown in the proof of Theorem 6.2, DW(p) 1is the sum of a
negative quasi-semi-definite operator and a compact operator, so Q(DW(p))Q
is also the sum of a negative quasi-semi-definite operator and a compact
operator. Thus, if we regard Q(DZ*(p))Q as an operator from El = range Q
to itself, we conclude that it is the sum of a negative multiple of the
identity operator, a negative quasi-semi-definite operator, and a compact
operator. Hence, Q(DZ*(p))Q 1is the sum of a negative quasi-semi-definite
operator and a compact operator. Since negative quasi-definite operators
are invertible, and in particular are Fredholm of index zero, we conclude
from Fact 6.4 that Q(DZ*(p))Q 1is also Fredholm of index zero. Since
DZ*(p) and Q(DZ*(p))Q differ by an operator whose rank is at most two, we

again conclude from Fact 6.4 that DZ*(p) is Fredholm of index zero, for

each p. ]
Proof of Theorem 6.3. By Lemma 6.4, we may replace our given economy by an

economy z* for which DZ*(p) is Fredholm of index zero for each p.
Moreover, as in the proof of Lemma 6.4, we may as well assume that (for some
a, with 0 < a < 1/2) zt(p) =0 for all p and 0 <t < a. Choose

0 <a' =< a.
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To approximate z* by a regular economy, we consider the restriction

of QZ* to El. Regarded as a map of E1 to itself, QZ* is certainly
Cl, and its derivative at p 1is D(QZ*)(p) = Q(DZ*(p)) = Q(DZ*(p))Q
(regarded as a map from El to itself), which is Fredholm of index zero.
By Fact 6.6, QZ* has regular values h in El arbitrarily close to O.

We now define the economy z by

A 1 p°h '
zt(p) -3 (- h + pee e) 0<t<a
zt(p) - z:(p) if a' <t < 1.

Certainly, zZ is a Cl-integrable economy. Moreover, d(z*,ﬁ) < e€/2 if a'
and |h| are sufficiently small, so d(z,z) < ¢ if a, a' and In| are
sufficiently small. To see that 2z 1is a regular economy, suppose that p
is an equilibrium price, so that 2(p) = 0. As we have noted, Walras’s law
implies that the range of D2(p) 1is a subspace of Tp; to show that p 1is
a regular equilibrium price we need to show that range D2(p) = Tp' If this
were not so, then range D2(p) would be a proper subspace of Tp; since
pee ¥ 0, this would imply that Q(range D2(p)) would be a proper subspace
of Q(Tp), and hence of E1 = range Q. On the other hand, for each q in

U,
z(p) = 2 (q)ar

- [ zx@dr + [ 2 (q)at
{@’,1] (0,a’]

- 7% - q-h
Z*(q) h + qe e.

Hence,
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QZ(q) = Qz#(a) - Qb + B - qzx(q) - h.

If we differentiate, we obtain

Q(D2(p)) = D(Q2(p)) = D(QZ*(p)).

Moreover, since Z(p) = 0, QZ*(p) = h. Since h 1is a regular value of
QZx, Q(DZ(p)) = D(QZ*(p)) maps E1 = range Q onto El. " Hence,
Q(tangeDZ(p)) is not a proper subspace of El’ so rangeDZ(p) is not a

proper subspace of Tp; that is,
rangeDZ(p) - Tp'

Consequently, p 1is a regular equilibrium price. 1

We recall that, in the finite-dimensional framework, the set of regular
economies is open. Because of the non-compactness of the price space it
is no longer the case in the infinite-dimensional setting. We do not know

the true topological nature of the set of regular economies,

7. Economies Wit Smo

If the commodity space is finite dimensional, or there are finitely
many types, or, more generally, the economy is Cl-integrable, then aggregate
excess demand is smooth, and, for a dense subset of such economies, equilib-
ria are determinate. Without C1 integrability, there are three additional
possibilities: aggregate excess demand may be smooth and have regular
indeterminate equilibria, it may fail to have regular equilibria, or it may
not be smooth. About the case of smooth demand without regular equilibria
we know nothing. Non-smooth demand economies may, however, exhibit a robust

indeterminacy of a rather different type than that discussed in Section 5.
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As a preliminary, we need the fact that there are continuous maps with
the property that if they intersect a small C1 function once, they

intersect it infinitely many times.

lemma 7.1. If UCH is open, then there is a continuous function
f: U-H, and an ¢ > 0, such that, if g: U+ H is any C1 function
with supp le@) |, supp Iogp)|| < € and f(p) = g(p) for some p, then

this is true for infinitely many values of p ¢ U.

Proof. Write H = Eo + E1 where Eo is one-dimensional, e € Eo, and El
is orthogonal to Eo. Let Pge and Py be the corresponding components of

p. For any function f£f*: R -+ R define
f(p) = f*(po)e + P;-

Suppose that f* has the property described in the lemma for C1 functions
g*: R~ R with sup |g*|, sup |[Dg*| < 6. Such functions exist since, for
example, the sample paths of a Brownian motion are almost surely of this

. type. We claim that f also has the required property.

To see this, choose g as in the statement of the Lemma, and consider

solutions to the equation f(p) = g(p), or equivalently
Observe that, since |Dg| < 1, "D31" < 1l, and by the implicit function

1
theorem gl(po,pl)-p1 = 0 has a unique C solution pl(po). Hence,
f(p) = g(p) if and only if f*(po) - go(po,pl(po)). By assumption on g,
go(po,pl(po)) is the composition of C1 functions. Moreover,

sup ”gOH < sup [g| < €, and by the implicit function theorem

-1
sup [Dg | = sup [Dyg, - Digy(Dig; - 1) T Dyg, | = 3¢/(1-0).
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Consequently, if ¢ 1is chosen so that 3¢/(l-¢) = §, the infinite dimen-

sional version of the lemma follows from the one dimensional version. [ |

Clearly we can use Walras’'s law, homogeneity, and the results of
Section 4 to construct an economy with excess demand Z: U -+ H where
U= U0 + U1 , Where Uo C Eo, U1 C E1 are open, e € Eo, and E1 is
orthogonal to Eo with property that Zl: U1 -+ E1 is as in the lemma.
Moreover, Z(p) = 0 4if and only if Zl(p) - 0. Suppose |z-2'| < ¢, where
€ is as in the lemma. Set g = Z1 - Zi. Then Z'(p) = 0 if and only if
Zl(p) =~ g(p). In other words, since g is Cl, Z'(p) = 0 infinitely many
times in U or not at all. With a small amount of additional work, we
can arrange Z on the boundary of U so that Z and 2’ must have
equilibria, and consequently we have a robust example of a different kind of
indeterminacy.

We must emphasize that this example is also a valid example of a robust
indeterminacy in a finite economy. We can equally well construct a contin-
. wous, but not Cl, excess demand function based on underlying preferences
of consumers, for which no small C1 perturbation can eliminate the
infinitely many equilibria. The only difference is that, with finite
economies, smoothness of individual preferences is enough to rule out such
an example. In a large square economy, the assumption that aggregate excess
demand is C1 is an assumption not only on individual demand, but also on
the relationship between the characteristics of different individuals. More

strongly, Theorem 4.1 shows that, with a continuum of consumers, every

continuous excess demand function arises from underlying smooth consumers.
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APPENDIX

Recall that for F: U~ H, a C1 mapping, the (Frechet) derivative
of F at p 1is a continuous linear operator DF(p): H -+ H; we write
DF(p)q for the value of DF(p) at gq. Then the norm of DF(p) 1is its

norm as a linear operator, that is,

IoF(p) || = sup ( [DF(p)g]: q € H, |qf < 1).

Lemma A,l. Let f: Ux[0,1] -+ H be a mapping such that
(1) ft(-) = f(e,t): U=+ H is C1 for each t;
(1i) £(p,*): [0,1]) -+ H is measurable for each p.
Then the following mappings are all measurable (for each Py in U

and in H):

%0
(@) t= £ (pp)ll: [0,1) » H;

(b) t

4

sup oy IE. @) [0,1] =+ [0,=];
(e) £~ Df (pylay: [0,1] ~ H;
(@ - |pf (pp)l: [0,1) » [0,

(e) t

4

sup oy IDE(PY]: [0,1] ~ [0,=].

Proof. Let B = (q: qeH and |q| < 1) be the unit ball of H. Since H
is separable, we can choose a countable dense subset (q;} of B, and a

countable dense subset [p:) of H. Now,

I£ (Ol = sup a+£ (py) = sup q*+£ (p,).

By assumption, t - ft(po) is measurable; since the inner product is
continuous, t - q;-ft(po) is measurable for each n. Hence, the function

t - "fc(Po)" is the supremum of a countable family of measurable mappings,
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and is measurable. This is (a).
To prove (b), we simply observe that, because ft is continuous for

each ¢,

sup £ ()| = sgp £ (pD)].
peU

Hence, the function t = Sup_ "ft(p))" is the supremum of the countable
family of measurable functions t - "ft(p;)", and is thus measurable.

To prove (c), we write that, for fixed Po: 9 t,

ft(po+xqo) 'ft(po)

th(po)q0 = 1lim

A0 A
£ (ot Eaq) - £ (p)
- 1ig £ 70" 0 %0 tPo
= (1/n)

Clearly, then, the mapping t - th(po)qo is the limit of a sequence of
measurable mappings, and is thus measurable.

Parts (d) and (e) are proved exactly as (a) and (b).
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