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2 KEHOE ET AL.
1. INTRODUCTION

In this paper, we study the implications of gross substitutability of excess
demand for the equilibria of exchange economies with countably many
goods and arbitrarily many consumers (large-square economies). We begin
in Section2 by providing two extensions of the classical uniqueness of
equilibrium results to general (nonstationary) environments. Theorem A
applies to economies admitting some equilibrium with finite aggregate
wealth. Theorem B covers overlapping economies with a well-defined
beginning and no uncertainty. Interestingly, a continuum of equilibria can-
not be ruled out in all generality; we show this with a double-ended infinity
example in Section 3. Sections 3 to 5 concentrate on the classical stationary
overlapping generations model of Samuelson [25]. We are able to offer an
exhaustive analysis of both the determinancy (the size of the equilibrium
set) and the dynamic properties of equilibria.

Gale [11] provides a complete analysis of an overlapping generations
model in which there is one good in each period and a single two-period-
lived consumer in each generation whose demand function exhibits gross
substitutability. He finds, in particular, that indeterminancy (the existence
of a continuum of equilibra) is always associated with initial conditions
that allow fiat money: if there is no fiat money, then there is a unique equi-
librium. Even when there is fiat money, there is at most a one-dimensional
set of equilibria; in other words, equilibria can be parameterized by a single
number, for example, the level of real money balances. Balasko and Shell
[4] extend this result to a model in which there are many goods in each
period but a single two-period-lived consumer with a Cobb-Douglas utility
function in each generation. Geanakoplos and Polemarchakis [12] further
extend these results to a model in which the single two-period-lived con-
sumer in each generation has an intertemporally separable untility function
that generates an excess demand function exhibiting gross substitutability.
(See also Kehoe and Levine [15].)

These results contrast with those of Kehoe and Levine [16, 17] who
analyze the properties of a pure exchange overlapping generations model
with an arbitrary number of consumers in each generation and an arbitrary
finite number, n, of goods in each period. They find that there are robust
examples of economies with an n dimensional manifold of equilibria if there
is fiat money and an n— 1 dimensional manifold of equilibria if there is no
fiat money. There are, however, also robust examples of economies with
unique equilibria.

We argue, in Sections 3 to 5, that Gale’s analysis generalizes in its
entirety to overlapping generations gconomies with n goods in which the
excess demand functions exhibit gross substitutability. We show that his
distinction between the classical and the Samuelson case continues to hold:
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There are two types of asymptotic behavior possible. The first is a steady
state, which we call the nominal steady state, in which the price level is
constant and there is a nonzero amount of nominal debt passed from
generation to generation. The second is a steady state, which we call the
real steady state, in which the price level rises or falls exponentially and
there is no nominal debt. The classical case is where the nominal steady
state has a negative amount of nominal debt; in this case the real steady
state has an exponentially falling price level. The Samuelson case is where
the nominal steady state has a positive amount of nominal debt; in this
case the real steady state has an exponentially rising price level. Moreover,
the equilibria satisfy the same strong turnpike properties as in the one-good
case. We emphasize that gross substitutability rules out cycles of the sort
considered by Benhabib and Day [5], Benhabib and Nishimura [6], and
Grandmont [13].

Section 3 presents the general stationary overlapping generations models
and analyzes a one-good example. Section 4 analyzes the steady states of
the general model. Theorem C shows that the monetary and the real steady
state are unique and that economies can be classified as in Gale. Section 5
establishes the turnpike properties of equilibria. The basic arguent is in
Theorem D. Theorems E and F offer then a complete characterization of
the dynamics for, respectively, the double-ended and the single-ended
model. We point out that, while our uniqueness results are the natural
generalization of the classical static theorem for a finite number of goods,
the results on dynamics have no finite counterpart. In Section 6,
Theorem G generalizes the analysis to the overlapping generations -
economies with land considered by Muller and Woodford [22, 23].
Finally, Section7 discusses the limitations of the gross substitutability
hypothesis in intertemporal or production contexts.

2. GENERAL NONSTATIONARY ECONOMIES

We first consider a general economy with a countable number of goods.
The economy is specified by an excess demand function f: R¥, - R that
satisfies the following assumptions:

a.l. Homogeneity of degree zero: f(ip)=f(p) for all 4>0 and
PERT ..

a.2. Boundedness below: there exists we RY , such that f(p)2 —w
for all pe RT .

a.3. Weak gross substitutability: if p>p and p,= p, for some i, then

fdp) = fi(P).
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a4. Indecomposability: if p>p, p,=p; for some i and f(p)=AP)
then p =p.
a.5. Walras’s law: p -f(p) =0 whenever p-w < c0.

The vector w is to be interpreted as the aggregate endowment. For any
two vectors x, ye R® we write x-y=272,X;"); whenever the series
converges absolutely.

An equilibrium is a price vector € Ry, such that f(p)=0. Our first
theorem says that, if there is an equilibrium that assigns finite value to the
aggregate endowment, then it is the unique equilibrium of the economy.

THEOREM A. Suppose that f satisfies assumptions a.1-a.5 and that there
exists pe R, such that f(p)=0 and p-w < 0. Then p is the unique equi-

librium; that is, f(p) =0 implies p=Ap for some A >0.

Proof. Suppose that p and p are both equilibria and that p-w < .
Normalize prices so that p; =p,=1. Set p=p A p; that is, p;=min(p;, p;)
for all i If p,=p,, then p<p and weak gross substitutability imply that
fi(p) <fi(p)=0. Similarly, if p,=p;, fi(p)<fi(p)=0. Therefore f(p)<0.
Since p, p, and w are all positive, p<p implies that p-o < p-w<oco.
Consequently, Walras’s law implies that f(p) =0. Since p 2 p, p; =p:, and
f(p)=f(p) =0, indecomposability implies that p = p. This, in turn, implies
that p>p. Now p, = p, and indecomposability imply that p=p. |

Note that Theorem A implies that, if there is an equilibrium that gives
finite value to the initial endowment, then there cannot be another where
the value is infinite. If one consumer (with nonsatiated preferences) owns
a fraction of the aggregate endowment that is uniformly bounded away
from zero for every good, then, since he must have finite wealth in equi-
librium, it follows that total wealth is finite. In models where no consumer
owns a fraction of the aggregate endowment, such as the standard overlap-
ping generations model, the value of the aggregate endowment may be
infinite, and Theorem A does not apply. It does apply, however, to the
overlapping generations models with land or with infinitely lived
consumers considered by Muller and Woodford {23]. Moreover, we can
complicate the structure of that model, either by running time back to — oo
or by allowing for uncertainty with contingent claims markets, and
nevertheless conclude, when consumers’ demands exhibit gross sub-
stitutability, that, if an equilibrium exists, it is unique. This is because the
one-directional nature of time does not play any role in our argument.
See Section 7 for more on economies with land. Theorem A also applies to
the type of general large-square economy studied by Kehoe, Levine,
Mas-Colell, and Zame [19].

There are many models of interest (including the standard overlapping
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generations model) where the finite wealth condition is not satisfied. We
shall see in Section 3 that uniqueness may then well fail. It turns out,
however, that under some additional regularity conditions uniqueness can
be proved for a particularly important case: the classical overlapping
generations model where the economy extends to infinity from a well-
defined beginning at time one (the one-ended, as opposed to the
two-ended, model). This we now proceed to show.

We consider general, nonstationary overlapping generations economies
in which consumers live for two periods. Since we allow for many goods
and consumers, the assumption of two periods of life is completely general:
Balasko, Cass, and Shell [3] present a simple procedure for converting a
model in which consumers live for any uniformly bounded number of
periods into one in which they live for only two. This procedure, which
redefines periods and generations, increases the number of goods in each
period and the number of consumers in each generation.

The economy is now specified by a sequence of excess demand functions.
Generation 1, 7> 1, has excess demand y,: R¥', — R” when young and
z,: R*_ — R" when old. Generation 0 has excess demand z,: R", | — R" It
is convenient for notation to let y,: R , — R" be the function identically
equal to zero. Given a price sequence p, the excess demand for goods in
period ¢ is

fl(p) =ft(pt—19 P:s pt+l)=zt—1(pt—l’ p1)+yt(pts pt+l)s

where we let p, be an empty symbol (this is a convention used repeatedly).
We assume:

A.l. Every y, and z,, 0 <t < o0, is homogeneous of degree zero.

A.2. The functions (y,,2z,), 0<t< oo, are bounded below. Namely,
there exists a sequence of initial endowments ®,€R%, such that
(yAq), z,(q))> —w,, for all 0<t<oo and ge R, . Moreover,
{llo/lw,_,l :0<t< oo} is bounded from above and away from zero.

A.3. Every (y,,z,), and therefore every f,, 1 << o, exhibits weak
gross substitutability: if (B, 1, Pr» Pix1) Z (Be—1s Brs Pry1) and py=p, for
some i thenfi(p‘t—la 13!’ pt+l)>f£(p-t—13 P_t’ p_t+l)'

A.4. The functions f, are uniformly indecomposable: for any ¢>0
there exists >0 such that if for any ¢+ we have (p,_,, P, Piv1) 2
(By_1s Pr» Pr_1) e, pi=p' for some i, (P,_y, P Prv1) <(1/e)e and
“(I/H(ﬁz-h ﬁt’ ﬁt+l)”) (ﬁt—l’ ﬁn ﬁt-{\—l) - (1/”(p-t——l’ p-n pt+l)")(p_t—l9
ﬁn ﬁt+l)”>5’ then Hft(ﬁt—la ﬁt’ pl+l) - ft(p-z—l’ ﬁn ﬁ!+l)"/“wt">5
(Here e is the vector with all entries equal to one.)

A.5. The family of functions {(1/|w)(y,z,):0<t<o0} is
uniformly continuous on compact subsets of the domain.
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A.6. (Boundary) For any sequences f, =1 and g« € R¥, such that
gk~ q+#0 and g'=0 for some i, we have [[(y,(qx), z,(qc)Il/l|lw ] = 0.
Similarly, if g, = ¢#0 and ¢, =0 for some i, then |z4(g, )l — o0.

Except for the uniformity restrictions, these assumptions are standard.
Notice that Walras’s law is not assumed. Assumption A.4 has been chosen,
although it is strong, because it is weak enough to include situations where
periods and generations have been redefined to convert a model in which
consumers live for more than two generations into one in which they live
for two. In a stationary economy (one where all generations are identical)
the uniformities are automatically satisfied. Thus, they can be interpreted
as putting some limit on how dissimilar generations can be. For example,
the indecomposability assumption A.4 not only rules out situations in
which some generation consists of two groups of consumers who have
preferences for, and endowments of, disjoint sets of goods, but also
situations in which the functions f, converge to an excess demand function
that is decomposable in this sense. If we derive the excess demand functions
from utility maximization, we could show that A.6 is implied by the other
hypothesis (see, for example, Arrow and Hahn [2, pp. 221-223]): indecom-
posability and homogeneity imply that the excess demand cannot be
defined when some prices are zero.

An equilibrium is a price sequence p such that f,(p)=0 for all 1> 1.

LEMMA 1. Suppose that the (y,, z,) satisfy A1, A2, A5, and A.6 and
that p is an eventual equilibrium (in other words, there is T such that
f(p) =0 for t > T). Then there exists y > O such that 1/y < p)/p! <y
for all 1<i, j<n, 1<t<oo, and t=t—1, t, t+1. In other words,
{(/1Pi=1> Pes Pes N Pi— 15 Pos Pis1)) 1 1<ES 00} has compact closure
in R, .

Proof. Suppose the contrary. Normalize the elements of the sequence
41,42, .., Where ¢,=(p,, p,+,), to all satisfy |lg,|| =1. Then g, has a sub-
sequence that converges to a vector ¢#0 such that ¢'=0 for some i.
Assumptions A.2 and A.6 imply that, as 1 - co, there is no upper bound to
(1/lw)(¥{q.) 2{q,)). The assumption that [w,ll/llw,_,[ is uniformly
bounded now implies that g, cannot satisfy the equilibrium conditions for
t sufficiently large. ||

We are now in a position to prove uniqueness:

THEOREM B. Suppose that (y,, z,), 0<t< oo, satisfy A.1-A.6. Then (up
to normalization) there is at most one equilibrium.

Proof. Given two arbitrary price sequences, p and p, define
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F,=max, p;/p,, r,=min, p'/p’. For later reference it is convenient to
subdivide the proof into three steps.

Step 1. Here we assume only that p, p are eventual equilibria and that
r,»r and r,—r for some 7, r. We show that 7=r. Denote 7,=
(13:—1’ P p—t+1)’ 6; = (Ftﬁt—l’ D ’_'th+1)’ 0, =(Fi_1Pe—1> T Pss Fr+1p-t+1)’
and 4,=(p,_,, P,»P.+1) By the uniform continuity hypothesis (and
Lemma 1), we have |f(v,)—/f.(0,)l/|w,]|—0. Because o,’>4, and
7, p.= p' for some i, the uniform indecomposability (and Lemma 1) implies
I(1/ho7 1oy — (/18,181 = 0. Now, (1/118711)o7 = I18,1/15:) (1/16.11)9, with
equality for at least one component. Hence, without loss of generality,
we can assume that |4,||/|o;|| - 1. This implies |3,||/||0,| =7 Taking
subsequences if necessary, we can use a similar argument to show that
I50/1l5.}| — r. Hence rF=r.

Step 2. Here we assume only that the sequences p, p are equilibria for
t>T>2. We claim that 7,_, <7, t=T, implies 7/,<F,,, and, similarly,
that r,_,>r,, t=> T, implies r,>r,, . Indeed, suppose that 7,_, <7, and
Ft> F!+ L Then (Ftﬁt—l’ Ftp—t’ F!ﬁt-{-l) 2 (ﬁt— s ﬁn ﬁt+l) and Ftp_;=ﬁ:
for some i. Again indecomposability and the equilibrium condition contra-
dict (Ftﬁt—h Ftp-t’ Ftﬁt+l) # (p‘t—l’ ﬁt’ ﬁt+l)‘ Consequently’ Ft<f1+1'
Reversing the roles of p, and p,, we can prove similarly that r,>r,, .

Step 3. We now exploit the fact that both p and p are full equilibria.
We establish first that 7,>7, and r,<r,. Suppose, to the contrary,
that 7,>F,. Then (F,p,,7 p,)=(p,, p») and F,p,=p, for some i
Therefore, indecomposability and f,(7, p,, 7; p,) =f1(p, p,) =0 contradict
(F,py, ¥y P2)# (P, P,). Hence, 7, > F, and, similarly, r, >r,. By Step 1, this
implies 7/, < --- <7, < ---and r; > --- 2r,> ---. By Lemma 1, 7, — r, must
be bounded. Therefore the two monotone sequences 7, and r, are bounded.
We can conclude that 7, » 7, r, - r for some 7, r.

Consequently, by Step 1, 7=r and r,=F7,=r for all ¢; that is, p=rp. |}

The initial conditions, that is the excess demand of the old at time 1, are
customarily described by means of a function z3:J— R", where
J= R" , xR is a cone of permissible combinations of price vectors p; and
fiat money M. The function z; is homogeneous of d:gree zero on its
arguments (p;, M). To go from this to our previous specification we need
a price index m: R, , = R, ., that is, a continuous, monotonically increas-
ing, and homogeneous of degree one function (for example, n(p,)=p; for
some i, or n(p,;)=p, -y, ...). If then we let m stand for real balances we
can put zy(p, m)=zy(p,, n(p,)m). For m fixed the function zy(p, m) is
homogeneous of degree zero, and therefore, if A.1-A.6 are satisfied, we can
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conclude from Theorem B that for every level of real balances m there is at
most one equilibrium. .
The next proposition is a variation of Theorem B that does not involve

the initial conditions z,.

PROPOSITION 2. Suppose that (y,,z,), 1<t<oo satisfy A.1-A.6. Let

n(p,) be an arbitrary index function. Then for any qe R", , and me R there
is at most one price sequence p such that p,=gq, f(p)=0 for t>1, and

P1-yi(py, p2)=n(p,)m.

Proof. Suppose, to the contrary, that there are two such price sequences
p and p. The proof proceeds exactly as that of Theorem B. The only change
required is a modification of the argument in Step 3 showing that 7, > 7,
and r,<r,. Suppose that 7, >Fr,. In fact, 7,=1 (because p,=p, =gq).
Hence, 7, <1 means that p, <p,. Because (p,, p,)<(p,, p») and p, =p,
the weak gross substitute condition yields y,(p,, 7.) = y:(p,, p,). Since
q-y:1(Pr, P2)=q-y1(p1, b2) =n(q)m, this implies y,(p;, p»)=y2(P1, b2)
Therefore, by indecomposability, p,=p,, which is a contradiction. We
conclude that 7, > F,. Similarly, r, <r,, and the rest of the proof is as in
Theorem B. |

Remark. 1t is interesting to observe that, if p and p are equilibria for
t2T=2and p,=p,, then p, p are monotonically related; in other words,
either p<p or p > p. Indeed, the proof of Theorem B fails to apply only if
either 7/, 27,> --- 27,2 ---orr, <r,< --- <r,< ---. Since 7/, =r, =1, this
means that either 7, <1 for all ¢, in which case p<p, or r,>1 for all ¢, in
which case p > p.

We discuss informally an important implication of Proposition 2. When-
ever defined let g(q, m)=y,(q, p,) where p=(q, p,,..) is as in Proposi-
tion 2. Then g(q, m) is a kind of reduced excess demand in period one; it
is obtained under the condition that all other periods are in equilibrium.
Bringing in the initial conditions, the overall equilibrium can then be
found as the solution of the system of excess demand equations
zo(q) + g(g, m) =0. Assume that z, satisfies Walras’s law in the sense that
q-z9(q) = n(q)m for some m. Then we can set m= —m and, once prices
have been normalized and one equation eliminated (courtesy of Walras’s
law), we are left with a system of n—1 equations in n— 1 unknowns.
Therefore, we would expect that typically the set of solutions is discrete.
Observe that this heuristic argument (the rigorous treatment requires
smoothness hypotheses) does not use any kind of gross substitute
hypothesis on z,. Consequently, remembering that we are free to redefine
periods, we can conclude that economies that are eventually gross sub-
stitute typically do not have a continuum of equilibria.
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3. STATIONARY OVERLAPPING GENERATIONS ECONOMIES

We proceed to the study of stationary overlapping generations
economies. The model is as in Section 2 except that now (y,, z,) = (y, z) for
all ¢+. For the moment, we ignore initial conditions. Because their statement
can be considerably simplified in the stationary case, we repeat assump-
tions A.1-A.6:

A.l. (y, z) are homogeneous of degree zero.

A.2. (y, z) are bounded below.

A.3. (), z) exhibits weak gross substitutability.

Ad4. (y,z) are indecomposable; that is, §= 4§, §'=¢' for some i and
Y(@)=y(g), z(g)=2(§) imply §=4.

A.5. (y, z) are continuous.

A.6. For any g, e R*, such that g, —¢g#0, ¢'=0 for some i, we
have [|(y(qc), 2(q:))ll = .

To these assumptions we add now:

A7. The excess demand function (y,z) obeys Walras's law:
Pt'y(Pta pt+l)+pt+l ‘Z(Pn Pt+1)=0 for all (pn Px+1)ER%:+'

Of course, Walras’s law is a natural assumption in a nonstationary
environment as well; it plays no role in the results of the previous section,
however.

There are two versions of this model. The version in which time begins
at t=1 is called the single-ended infinity model. The version in which time
runs from —oo to +oo is called the double-ended infinity model. The
double-ended model has an alternative interpretation: We can view it as a
model with a fixed starting date and uncertainty over two states of nature
in the initial period. If the first state occurs, the model runs to + co. If the
second occurs, it runs to —oo; that is, the preference and endowment
patterns are reversed.

A steady state of this model is a price vector pe R”, , and an inflation
factor B> 0 such that z(p, Bp) + y(p, Bp) =0, or, in other words, such that
p,= B'p is an equilibrium of the double-ended infinity model defined by
(y, z). Steady states naturally divide themselves into two types. The steady
state condition implies that p - z(p, Bp)+ p - y(p, Pp) = 0; Walras’s law implies
that Bp-z(p, Bp)+p-y(p, Br)=0. Consequently, (—1)p-z(p, fp)=0
where p-z(p, B, p) is the amount of nominal debt transferred from
generation to generation in the steady state. A nominal steady state is one
for which B = 1. A real steady state is one for which p -z(p, fp) =0. Kehoe
and Levine [16] use the sort of fixed point argument used in static general
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equilibrium theory to prove the existence of a steady state of each type.
Except in degenerate cases, f=1 and p-z(p, Bp)=0 do not occur
simultaneously.

We first consider the case with a single good in each period and a single
consumer in each generation with a Cobb-Douglas utility function over a
two-period life. Since the Cobb-Douglas utility function gives rise to an
excess demand function that exhibits gross substitutability, our model is a
special case of that considered by Gale [11]. The consumer born in period
t has a utility function of the form

u(c,, ct+l)=al log ¢, +a, IOg Crvt

over consumption in periods ¢ and ¢+ 1. Here a,,a,>0, a, +a,=1. His
endowment of goods is (w,, w,), which is strictly positive. If this consumer
faces prices (p,, p,.1), then his demands are given by the familiar
Cobb-Douglas demand functions

¢, = al(ptwl +pt+1w2)/pt
Cry1= az(Prwl +pt+lw2)/pl+l'

An equilibrium of the double-ended infinity version of this model is an
infinite price sequence that satisfies the requirement that demand equal
supply in each period,

ay(p,— 10y +p,@)/p,+a(p,@+ P,y 10,)/p, =0, + 0, — 0 <I< 0,
which is easily converted into the second order linear difference equation
A, p, -1 — (a0, +a,w,)p,+a,0,p,,. =0, — 00 <1< 00.

There are two steady state equilibria of the form p,= ’. They can be found
by solving the quadratic equation

a,w, —(a,0,+a,0,)p+a,w,f*>=0.

The solutions are =1 and f=a,w,/(a;w,). Consequently, any solution
to the difference equation has the form

a;

t
p,=k1+k2[ ] — 0 <1<,

a,w;
where k, and k, are arbitrary constants. For a solution to make sense as
an equilibrium of the economy, we require that it always be positive. This
implies that &, and k, are nonnegative.

Since we do not consider two equilibria to be distinct if one is a scalar
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multiple of the other, we can impose a normalization such as
po=k, + k,=1. Nevertheless, there is always a one-dimensional family of
equilibria to this model except in the degenerate case where a,w, =a,w,.
Consider the excess demand function /2 R?, — R given by

S Pi—1s Pis Prv1) = (a0, p,_1— (a0, +alw2)pt+alw2pt+l)/pn

—00 <ft< .

Then f satisfies the assumptions of Theorem A. The nonuniqueness of
equilibrium does not contradict the theorem, however, because there is no
equilibrium that satisfies the requirement 372 _, p,(w; + w,) < 0.
Consider now the single-ended infinity version of this model. There is an
initial old consumer who may violate his budget constraint by demanding
m of the initial young consumer’s endowment. Here mp,, which may be
positive, negative, or zero, is the stock of fiat money. The equilibrium

condition in the first period is, therefore,

m+a(p,w;+p,w,)/p1 =0y,

which can be simplified to a,w, p, —a,w, p, =mp,. This initial condition
allows us to solve for &k,

or
(a0, —a, wy)k,=mp,.

Hence, normalizing by p, = 1, we see that for fixed m we can have at most
one equilibrium price sequence. This is in agreement with Theorem B. For
some values of m an equilibrium may not exist, however.

There still is the requirement that p, be positive for all z>0 and there-
fore, if a,w, < a,w,, then only nonpositive values of m are compatible with
equilibrium. Note also that there is an equilibrium that satisfies
>, plw,+w,) < if and only if m=0 and a,w, <a,w,. In this case,

a,m,
D= 221, I1<t< 0.
a,,;

The remaining analysis of the example constitutes a preview of the
results to be established for considerably more general stationary models in
Sections 4 and 5.

The equilibrium equations admit two steady states. In the nominal
steady state k,=0, and p, is constant through time. This implies that
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m=a,w,; —a,w, in the single-ended model. In the real steady state k,; =0,
and p,=p'"! p, for f=a,w,/a,w,. It implies that m=0 in the single-
ended model. The two steady states coincide if and only if 4,0, =a,w,.

The amount of nominal debt transferred from generation ¢ to generation
t+1 along an equilibrium path is 4,0, p,_; —a,w,p,. The consumers’
budget constraints and the equilibrium conditions imply that this amount
remains constant over time. In the case where a,w, < a, w, this amount is
negative at the nominal steady state. This is what Gale [11] calls the
classical case. Note then that

(i) the real steady state necessarily involves exponential deflation
since a,w,/a;w, <1,

(i) in the double-ended model, every equilibrium path except the
real steady state itself goes from the real to the nominal steady state,

(iii) in the one-ended model, equilibrium paths converge to the
nominal steady state (except if m=20).

The Samuelson case is where a,®, > a,w,. Here nominal debt is positive at
the nominal steady state. Also

(i) there is exponential inflation at the real steady state;

(i) as in the classical case in the double-ended model, equilibrium
paths go from the steady state with lower f to the steady state with higher
B, but this now means that except for the nominal steady state itself
equilibrium paths go from the nominal to the real steady state;

(iii) in the one-ended model, equilibrium paths converge to the real
steady state (except if m=a,w, —a,w,).

The amount of nominal debt passed from generation to generation can
be interpreted as fiat money in the single-ended infinity model. It need not
be interpreted that way, however, in the double-ended infinity model. As
noted above, the model in which time runs from — oo to oo can be reinter-
preted as a model with a fixed starting date and uncertainty over two states
of nature. After the initial generation, in state 1 the representative
consumer has endowments w, when young and w, when old and utility
function a, log ¢, + a, log ¢,,.;. In state 2 he has endowment stream
(w,, ;) and utility function a,logc,+a,logc,, . Assume that the ran-
dom shock occurs before the second generation is born. This generation is
not allowed to insure itself against what state it is born into and so faces
two budget constraints. The initial old generation has endowment w, in
state 1 and endowment w, in state 2. It faces one budget constraint.
Furthermore, the representative consumer has von Neumann-Morgenstern
utility function log ¢, and assigns probability a, to state 1 occurring and a,
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to state 2 occurring. By construction, the equilibria of this example are
isomorphic to those of the double-ended infinity model: Let p' be the price
of the good in period ¢ and state i. Then ((p}, p3), (p3, P3), -.) is an equi-
librium of the model with uncertainty if and only if (.., p3, pi, p1, P3, )
is an equilibrium of the double-ended infinity model. Yet another inter-
pretation of this model is as a single-ended infinity model in which there
are two goods in every period and two consumers in every generation but
the first. Consumer 1 in each generation has preferences for, and endow-
ment of, only good 1, and consumer 2 has preferences for, and endowment
of, only good 2.

4. STATIONARY OVERLAPPING GENERATIONS ECONOMIES: STEADY STATES

We proceed now to the analysis of steady states in general stationary
overlapping generations economies. Our next result says that the nominal
and the real steady states are unique and that the classification of steady
states given by Gale [11] for the model with one good in each period and
one consumer in each generation holds more generally.

TueoreM C. Suppose that (y, z) satisfies A.1-A.7. Then the nominal and
the real steady states exist and are unique. Moreover, (y, z) falls into one of
three cases:

(i) the classical case in which B<1 at the real steady state and
p-z(p, p) <0 at the nominal steady state;

(i) the Samuelson case in which B>1 at the real steady state and
p-z(p, p) >0 at the nominal steady state;

(iii) the coincidental case in which the real and the nominal steady
states are the same.

Before proving Theorem C we establish that there cannot be more than
one real steady state. The proof is simple but, curiously, rather indirect.

LEMMA 3. Under hypotheses A.1-A.T there is at most one real steady
state for (y, z).

Proof. Let p<pf, with corresponding time one prices ¢ and g, be
two steady states. Denote p = (g, fg, B°g, ...) and p = (g, Bg, B%3, ...). We can
assume that 5, <p, for t<2.

Assume first that g < 1. ’

Suppose that (g, f) is real; that is, §-y(¢, B§)=0. Let z5: R", , = R be
an excess demand function satisfying A.1-A.7 and z,(§)+ y(g, B§)=0.



14 KEHOE ET AL.

Obviously, such a z, exists. In particular, z, satisfies Walras’s law; that is,
g - Zo(@) = 0. Observe then that p is an equilibrium of the one-ended infinity
economy (zo, », z) and that this economy satisfies all the hypotheses of
Theorem A.

The next step is similar to the proof of Theorem A. Define p=p A p;
that is, p' =min{p’, p'}. Since p<p and for any #>1 and i, we have that
either p’ = j' or p' = p' and f(p) =/"(p) =0, we conclude that f,(p) < 0 for
t> 1. Because p,=p,, p»=P,, W€ also have f(p)=/1(p)=0. Therefore,
f{p)<0 for all .

Since p<p and p is exponentially decreasing (f<1), total wealth
evaluated at .p is finite. Hence, by Walras’s law, p- f(p)=
> p,-f(p)=0. This implies that f(p)=0 for all t+>1. That is, p
constitutes a finite wealth equilibrium of (zo, y, z). By Theorem A, p is the
unique equilibrium. Hence p=p, or p<p. But this is impossible because
B < B implies that eventually p,=f'q < f'q=p,. This contradiction shows
that (g, f) cannot be a real equilibrium.

Summarizing: any (, z) that satisfies A.1-A.7 and admits a steady state
(g, B) with B <1 cannot have more than one real steady state.

Let now (, z) be our given economy and let (g, B) be a steady state for
it. If B<1 we are done. If B> 1 consider the economy (J, 2), where time
is reversed in the obvious way: #(p,, P:+1) =2(P,+1, P,) and Z(p,, p, 1) =
(P, 41> Po)- (Note that (g, Z) satisfies A.1-A.7 if (y, z) does.) Then (g, 1/B)
is a steady state for (7, Z). Hence, (7, Z), and therefore (p, z), has at most
one real steady state. The only remaining case is where f=1. But there is
no more than one steady state with this value of . (In other words, there
is at most one monetary steady state.) This is fairly easy to see and, at any
rate, is verified in the proof of Theorem C. |

Proof of Theorem C. Consider the function h:R",  xXR,., — R”
defined by the rule

h(p, B)=1(p. Bp: Bp) ‘:1.',3 p-1(p. B, B0)e,

where again e = (1, ..., 1). Then £ is continuous, homogeneous of degree zero
in p, and satisfies p - h(p, B)=0 for all (p, f)e R", , X R, . . Furthermore,
h is bounded below and satisfies a boundary condition like A.4. Since, for
fixed B, h has the same properties as an excess demand function of a static
exchange economy, there exists p(f)e R”, , such that A( p(B), B)=0. Nor-
malize p(B) so that, for example, e - p(f)=1. We claim that p: R, , — R" |
is a continuous, single-valued function. The continuity of 4 implies that it
is an upper-hemi-continuous point-to-set correspondence. What we need to
show is that p(f) is unique. Suppose p and p both satisfy A(p, B)=0. Let
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F=max; p'/p’, r=min, p'/p" Then for i such that p'/p'=F, gross sub-
stitutability implies that

1:(7B, B7p, B*7) = 1., BB, B°P)-

Since h,(5, B) = h.(p, B), this implies that 5 -f(p, B, B°P) > p -/ (B, Bp: B2B)-
For j such that p//p’ =r, however, f(tp, Brp, B°rp) <fi(B, B, p*p), which
implies that p-f(j, f5, B25) < p-f (b, Bp, BP). Consequently, f(p, Bp, B ’p)=
f(p, Bp, B*p), and indecomposability implies that p = p.

The pair (p,B) is a steady state if and only if p=p(B) and
p-f(p, Bp, B?p) =0. By Walras’s law p-f(p(B), Bp(B), B (8))=(1—B) p(B)-
2(p(B), Bp(B)). Denote g(B) = (1—B) M(B) and M(B)=p(B)-z(p(P), Bp(B)).
There are two distinct ways for (p(B), B) to be a steady state: if =1 orif
M(B) =0. The function M(-) is continuous and the boundary condition A.4
implies that there exists >0 such that M(B)>0 for all B<p and f>1
such that M(B) <O for all B> f; see Kehoe and Levine [16] for details.
Since the graph of M(B) intersects the line B =1 only once and the line
M =0 only once, it must look like one of the three possibilities depicted in
Fig. 1. (It is natural to conjecture that M(B) is always downward sloping.
We have not been able to prove this, however.) |

M(B)

--~\\\\‘ Somuelson

case

8\ 5
0 — ‘ f
coincidental \
case

classical
case

FIGURE 1
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5. STATIONARY OVERLAPPING GENERATIONS ECONOMIES:
TURNPIKE PROPERTIES

In this section we study the equilibrium dynamics of the gross substitute
economies described in the last section. We shall see that strong turnpike
properties are satisfied. In contrast to the uniqueness theorems of Section 2,
there is no analog of the turnpike property in the finite static model.

We say that a price sequence p converges (forward) to a steady state

(g, B) if

1 1
lim ————— s Dev 1) =77 o S \ @ .
lim oy (P o) = gy @ FO)

If the sequence p is double ended, then we can also speak of convergence
backward to (g, f), namely,

1 1 1
lim ———— =244}
TS TR R TV T (ﬂ" ")

The next theorem contains the basic turnpike argument.

THEOREM D. Suppose that (y,z) satisfies A.1-A.6. Then every price
sequence p that is an eventual equilibrium (there is T such that
Y(P,s Prs1) +2(Pi—1, p.)=0 for all t=T) converges to a steady state.

Proof. Define the price sequences p and p by p,=p, and p,=p, .1, in
other words, p is a shift of p = p. Because of stationarity both p and p are
eventual equilibria. Define 7, = max; p!/p! (=max, p;, ,/p}), r,=min, pi/p
(=min, p’, ,/p’). By Step 2 of the proof of Theorem B the sequences 7,, r,
are such that, if 7, increases in one period ¢t > T, then it cannot ever again
decrease. Similarly, if r, decreases, then it can never again increase. Hence,
both sequences are eventually monotone. On the other hand, Lemma I
applied to p implies that both sequences are bounded. Therefore, 7, — 7 and
r,—r for some 7, r.

By Step 1 of the proof of Theorem B, we have 7=r. Call this common
value B. We can conclude that any accumulation point of the sequence
{(/1(Pss Prs VINPos Pos 1)} is of the form (g, Bg) and, by continuity, that
it satisfies (g, Bg) + z((1/B)q, g) =0. We saw in the previous section (proof
of Theorem C) that given f this equation has at most one solution. Hence,
{QM(pes re P p.+1)} has at most one accumulation point, which
implies that the price sequence converges to a steady state. |

We next put on record the basic conservation law implied by Walras’s
law:
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PROPOSITION 4. Suppose that (y, z) obeys Walras's law A.l. Then the
amount of nominal debt transferred from generation to generation
D1 2(Pis Piy1) is constant along an equilibrium price path of either the
double-ended model or the single-ended model (whatever the initial condi-
tions).

Proof. Premultiplying the equilibrium conditions z(p,_y, p.)+
y(Pn pt+l)=0 by D and USing Walras’s law pt'y(pt’ p1+1)=
—Pr+1 'z(pt’ pt+1)’ we get p, ’Z(pt—b pt)=Pz+1 'Z(P,, Pt+1)= l

We are now in a position to characterize the dynamics of the double-
ended model.

THEOREM E. Suppose that (y, z) satisfies A.1-A.1. Then every equi-
librium of the double-ended infinity model goes from a steady state to a
steady state with at least as large an inflation factor. More precisely, every
equilibrium is characterized by one of the following three rules:

(i) in the classical case, every equilibrium, besides the two steady
states, converges forward to the nominal steady state and backward to the
real steady state,

(i) in the Samuelson case, every equilibrium, besides the two steady
states, converges forward to the real steady state and backward to the
nominal steady state,

(iii) in the coincidental case, the single steady state is the unique equi-
librium.

Furthermore, in any of these cases the set of equilibria can be
parameterized by at most n variables.

Proof. Let p=(.., p,,..) be an equilibrium which is not a steady state.
Put F! = max, plt-é- l/pl;, .= mini P;+ l/plt By Theorem D, Fl - Bs r,— B as
t - + oo and, reversing time, 7, — o, r,—a as t - —co. Because p is not a
steady state we know that either 7,>a or r, <a for some ¢. Say that t=0.
If 7,>p, then 7,,,>F, for some t<0. But we saw in the proof of
Theorem D that if 7,,,>F7, then 7, >F, for all +'>t Hence, f>ua.
Similarly, if ro <a, then <.

Therefore, p converges backwards and forwards to different steady states.
In the coincidental case (iii), this implies that there cannot exist any non-
steady state equilibrium. Suppose we are in the noncoincidental case, and
call o and B the backward and forward limit rates of growth of p,, respec-
tively. By Proposition 3, M =p,,,-z(p,, P.+) is a constant independent of
1. Because either =1 or f=1 we get, taking the appropriate limit, that
M #£0. In turn, this eliminates the possibility that <1 or a>1 (in either
of these two cases we would get M =0 by taking the appropriate limit). In
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summary, f> a. Therefore, in the classical case we must have a <1 and
B =1 while in the Samuelson case we must a=1 and f>1.

Finally, notice that, by Proposition 2, two different equilibria are not
compatible with the same relative prices and real balances at t=0. This
provides the n parameters to index the equilibrium set. |

We do not know whether or not there are examples of classical case or
Samuelson case economies in which the only equilibria are the two steady
states.

We now turn to the single-ended model. Its equilibrium dynamics
requires special study, because while it is true (and immediate to see) that
every double-ended equilibrium can be made into an equilibrium of the
single-ended model for appropriate initial conditions, this is not the case in
the other direction: for some initial conditions the equilibria of the single-
ended model cannot be viewed as restrictions of double-ended equilibria.

Tueorem F. Suppose that (zo, y, z) satisfies A1-A.T and that zy is of
the form zo(q, m), where q -z4(q, m) =n(q)m for n(q), a price index. Then

(i) in the classical case, an equilibrium can exist only if m<O.
Moreover, except for m=0, the (unique) equilibrium converges 1o the
nominal steady state.

(ii) in the Samuelson case, suppose that z, is strictly increasing in m
(normal demand). Then except for at most one value of m the (unique)
equilibrium converges to the real steady state.

Proof. (i) By Proposition 4, M=n(p,)m=p,.,-2(Ps; Pr+1) for all «.
By Theorem D, p, converges to a steady state. If it converges to the real
steady state, then p,—»0 and so M=0. Therefore, if m#0, then p,
converges to the monetary steady state (g, 1). Since q-2(q,9)<0 (see
Theorem C) it follows that m <0.

(ii) Suppose, to the contrary, that there are two (distinct) equilibria
(Pys Pa» )s (P1> Pas-) for, respectively, m and m, converging to the
nominal steady state. Normalize prices so that lim,_ . p,=1lim,_  p,. By
Proposition 4, n(p,)m =n(p,)m, in other words, nominal money balances
are equal. On the other hand, Theorem B says that 1 # m—that is, real
money balances cannot be equal—so n(p,)# (p,). Assume, to be specific,
that n(p,)> n(p,), which implies 7 <. Then, since n is monotonically
increasing, p' > p' for some i. As in the proof of Theorem B, consider the
ratios 7, =max, p'/p’. We know that 7, > 1. It must also be the case that
F,>F,; otherwise, by Step1 of the proof of TheoremB, 1<r, <7<
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F3< .- which would contradict lim,_  7,=1. Since (7, p,,7, p,)=
(P, p.) and 7, p|, = p} for some i, weak gross substitutability implies that

f‘i(ﬁu P2 'ﬁ)=f§('71 Py, 7y Pa, "‘1)>f'i(131’ P2 ’h)=0=fi(131, P2, M).
But this contradicts the normality hypothesis on z, since m>r. |}

Remark. 1t is more natural to assume that z, is weakly increasing in m,
that m>m implies zy(p, m) = z4(p, m). To prove the result under this
assumption would require that we strengthen our gross substitutability
assumption enough to establish that f(7,p,, F, p,m)>f (P, P2, 1)

Remark. We should emphasize that we do not concern ourselves with
existence issues in this paper. Thus, while Theorem F provides conditions
under which a single-ended infinity economy has at most one equilibrium
with positive fiat money whose value does not converge to zero, we remain
silent about the existence of such an equilibrium.

It is interesting to compare the turnpike results of this section with those
familiar from the more traditional growth and equilibrium theory (see
McKenzie [20] and Bewley [7]). In the latter, there is, so to speak, a single
generation of infinitely lived agents. The key hypothesis in most of these
results is that the rate of discount is low. This assumption cannot even be
formulated in an overlapping generations context, and therefore our
turnpike results are not particularly related to them. It would be
worthwhile to explore, however, their relationship to the few turnpike
theorems in the traditional literature which do not depend on patient
consumers (notably Araujo and Scheinkman [1]).

6. STATIONARY OVERLAPPING GENERATIONS ECONOMIES WITH LAND

In this section we consider stationary overlapping generations economies
with “land.” As in Muller and Woodford [22, 23], land is an asset that
yields a constant positive quantity of perishable consumption goods each
period.

Let one unit of type i land yield one unit of good i each period, and let
de R". be the vector giving the total quantity of each type of land. Note
that land neither grows nor depreciates. For the single-ended infinity model
land is owned by the initial old generation. If we let s denote the total
initial value of all land, we can write the excess demand of the initial old
as zo(p, s). We assume that it satisfies Walras’s law. The excess demands of
generations 7> 1 are exactly as in the previous sections as these generations
initially own no land. We continue to assume that A.1-A.2 and A.5-A.7 are

satisfied.
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Let ¢’ be the price of type i land at the beginning of period ¢, before the
period ¢ yield is collected. Then an equilibrium of the single-ended infinity
model is a sequence of goods prices (py, P, -.) and of land prices
(q1» g2, ---) such that

zo(P1> 41 - d) +¥(py, P2)=d
z(pt—l9pt)+y(pupt+l)=da 2t o,

9:=P:+ 9415 1<t 0.

The first two conditions require that excess demand equal the yield on
existing land. The final condition follows from arbitrage pricing: one unit
of land in period ¢ before the yield is collected is the same as one unit of
land in period ¢+ 1 plus the period ¢ yield.

The equilibrium conditions and Walras’s law imply

Pr+1 -z(p, Pis1)—dis1 cd=—p,-y(Ps Prs1)—qis1 -d
=p,-Z(p,_1, pt)—pt'd'—qt+1 -d
=p,-2(p,—1, P)—4,-d

Since Walras’s law for z, implies p; - zo(p1, 4, - d) =g, - d, it follows that
Piv1-2(Pe> Piv1) =4 +1-d for all ¢ that is, the aggregate transfer from
generation to generation is always equal to the value of land.

An equilibrium of the double-ended infinity model is a sequence of goods
prices (..., p_1, Po»> P1» ) and land prices (... §_1, 4o, 41, ...) such that

2(p,_1s )+ V(P Pir1)=4d
9, =P/ %t4q:41
p,z2(p,_1sP)=4,-d

The final condition requires that the value of aggregate savings equals the
value of land. By the argument just given it will hold in all periods if it
holds in any period.

If we assume free disposal of land, then equilibrium also requires 4,20
for all . While this is the case of greatest interest, we have not assumed it
in defining equilibrium. This is because it is useful to consider equilibria in
which assets have negative values along with those in which they have
positive values. For example, a steady state with positive land prices of a
given double-ended infinity economy (y, z, d) corresponds to a steady state
with negative land prices of the time-reversed economy just as with
monetary steady states with positive and negative value of money. (Brock
[8] has argued that equilibria with negative land prices are possible in an
economy without limited liability for property owners.)
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Our next goal is to argue that if ¢, >0 for all ¢, then
=Y P

that is, there is no “speculative bubble” on the price of land. In particular,

this is true if there is free disposal of land.
To see that there can be no bubble, observe that by induction on the

arbitrage pricing condition

T
=) Petdrir
T=1
Since q,, 7., =0 and p, >0, it follows that 32, p, exists and is finite and
that lim,_, ., ¢-= 0 exists. Moreover,

=2 p.+ lim gr.

It remains to show that lim,_ , gr=0. If, in fact, lim_ ., ¢%>0, then
young people in period T must spend ¢%-d’ to purchase land from old
people. On the other hand, 3> , p, < oo implies that eventually the value
of the initial endowments of the young of some generation T is less than
q'-d’ which constitutes a contradiction. It follows that lim 7 _, ., ¢=0.

Note that if there is no free disposal, then ¢, <0 is possible; in other
words, there can be “negative speculative bubbles” on the price of land in
which ¢, <X, p..

In the case of an economy with land, we should adapt slightly our defini-
tions of weak gross substitutability and of indecomposability. Let us define

filpy, P2, S)=2zo(P1, 8)+¥(P1, P2)—d
ft(p!—l’ D pt+1)=z(pt—l9 P,)"'y(P,, pt—l)_d9 25t o0,

For ¢t > 2 the weak gross substitute and indecomposability hypotheses (A.3
and A.4) are as before. The only change is in f; or, more precisely, in z,.
When we consider a price increase from (j5;, p,) to (p,, p») we should also
increase § to some § so as to maintain some measure of real wealth for the
initial old generation. If, heuristically, we think of s as the sum of the values
of the yield of land, it is clear that in going from (p,, p,) to (§,, p,), and
implicitly letting p, > p, for all 7, nominal wealth should increase by at least
(p,—p,)-d; that is, § =5+ (p, — p,) - d. With this motivation we assume

A8 If (p1, ps. §— Py d) 2 (p1, b2» 5— P} -d) and py=p) for some i,
then fi(py, P2» §)=fi(P1, P2 ). Moreover, equality holds only if
(1> P2, §)= (D1, P2, 5)-
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Suppose that (p,, p,, ...) is a price sequence with 3~ | p, <o and that

fl (Pb sz(z pt) d) =ft(pt—l’ P Pt+1)=0-

t=1

It is evident that if we define ¢, =Y., p., then the arbitrage pricing condi-
tion is satisfied. Consequently, equilibria of the single-ended infinity
economy consistent with free disposal coincide with the equilibria of an
exchange economy in which the initial old have an endowment vector d in
each period. Theorem B then applies directly.

PROPOSITION 5. If the single-ended infinity economy (2o, y, 2, d) satisfies
A.1-A.8, then there is at most one equilibrium in which q,2 0 for all t.

A steady state is an equilibrium of the double-ended infinity economy
(»,z,d) such that, for some B, p,=pp, and, correspondingly,
g,=(B")/(1—B) p,. Observe that, necessarily, O0<p and B#1. A steady
state is therefore consistent with free disposal if and only if § < 1. There is
at least one steady state with f<1 and at least one with f>1. (Let g(p)
be defined from f as in the proof of Theorem C. As there, limg o g(p)=
lim _, ., g(B) = oo, but now g(1)<0.)

The following characterization of the equilibrium dynamics is analogous
to Theorems C—F for economies without land, and can be proven in a
similar way:

THEOREM G. Let the single infinity economy (24, ¥, z, d) satisfy A.1-A.8.
Then

(i) There is a unique steady state with positive land prices and a
unique steady state with negative land prices.

(i) An equilibrium of the single-ended infinity model consistent with
free disposal (which is unique) converges to the steady state with positive land
prices as t — o0. Every other equilibrium converges to the steady state with
negative land prices. The set of such equilibria can be parameterized by at
most one parameter.

(iii) In the double-ended infinity model there is at most one equilibrium
consistent with free disposal: it is the steady state with positive land prices.
Every other equilibrium converges to the equilibrium with negative land prices
as t — oo and to the steady state with positive land prices as t — —oc. The
set of such equilibria can be parameterized by at most n parameters.

Examples of economies with continua of equilibria with negative land
prices can easily be constructed using the demand functions of Section 3;
see also the diagrammatic exposition of the one-good case by Brock [8].
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It is also possible for there to exist equilibria with negative land prices and
valued fiat money. This is mostly a matter of reinterpreting s; we shall not
pursue it here.

Stationarity plays an important role in generating the uniqueness result
for economies with free disposal of land. In a nonstationary economy, if
endowments grow at a faster rate asymptotically than the aggregate
dividends from land, then it is possible for there to be an equilibrium in
which valued fiat money coexists with freely disposable land. See Wilson
[27] for such an example. Tirole [26] interprets this sort of example as an
economy with a speculative bubble on the price of land. In such cases there
can exist continua of equilibria, in which all equilibria assign land a
positive value forever.

7. CONCLUDING REMARKS

Unfortunately, our results do not apply to economies with production.
Even in economies with a finite number of goods, gross substitutability in
consumers’ excess demand functions does not imply uniqueness if there is
production, as an example due to Kehoe [14] demonstrates. Moreover,
Calvo [9] presents a simple example of an overlapping generations
economy with production in which the representative consumer in each
generation can have gross substitutes excess demand but in which there can
be a continuum of equilibria even though there is no fiat money. Further-
more, Reichlin [24] gives an example of a stationary, gross substitutes
production economy in which the asymptotic behavior of the equilibria can
be cyclical or chaotic.

In the case of decreasing returns production technologies, the equi-
librium conditions still take the form f(p,_ 1, P:» P+ 1) =0, where the func-
tion f represents excess demands of consumers minus net supplies of profit
maximizing firms. All of our results still hold if the function f exhibits gross
substitutability. Furthermore, there are meaningful economic conditions,
albeit highly restrictive ones, under which this property holds. If firms are
initially owned by the initial old generation, then the present discounted
value of all profits enters the budget constraint of the initial old and no
subsequent generation. Consequently, a pattern of preferences and endow-
ments that produces a gross substitutes excess demand function in the pure
exchange case produces the same excess demands for consumers in all
generations but the initial old. Furthermore, there are known cases in
which firm supplies exhibit gross substitutability. One case is that of land:
net supply is a constant vector regardless of prices. Another case is produc-
tion of a single output using a single input. In this case, net supply of both
goods must be a function only of the price ratio of these two goods;

.~
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convexity of the profit function then guarantees that both net supplies are
monotonic functions of this price ratio, which implies gross substitutability.
This case applies to the first example of Calvo [9], in which a single
perishable good is produced using labor and a fixed factor initially owned
by the initial old generation. In this example he is only able to generate a
continuum of equilibria by using consumer €xcess demand functions that
violate gross substitutability. Calvo’s second example, in contrast, has a
continuum of equilibria without fiat money despite gross substitutability in
the consumer excess demand functions; this depends on constant returns
production without a fixed factor. (See the discussion of gross sub-
stitutability in production economies in Muller and Woodford [23]).

The case for gross substitutability in consumer excess demand functions
is even weaker in intertemporal models than it is in static models. With
constant-elasticity-of-substitution demand functions the elasticity of sub-
stitution must be greater than or equal to one for gross substitutability to
hold at all price vectors; empirical studies have shown the intertemporal
elasticity of substitution in consumption to be significantly less than one
(see, for example, Mankiw, Rotemberg, and Summers [21]). See Fisher
[10] for a general discussion of conditions on the utility functions that
imply gross substitutability in the desired demand functions. Kehoe and
Levine [18] present a simple example, with plausible parameters, of an
overlapping generations model with one good in each period and a single
three-period-lived consumer in each generation, that has a continuum of
equilibria without fiat money and a two-dimensional set of equilibria with
fiat money: the consumer’s demand function violates gross substitutability.
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