Copyright (C) 2003 David K. Levine

This document is an open textbook; you can redistribute it and/or modify it under the terms of version 1 of the open text license amendment to version 2 of the GNU General Public License. The open text license amendment is published by Michele Boldrin et al at http://levine.sscnet.ucla.edu/general/gpl.htm; the GPL is published by the Free Software Foundation at http://www.gnu.org/copyleft/gpl.html.

Reputation

Extensive Form Examples

Chain Store Game

Quality Game

Simultaneous Move Examples

Modified Chain Store
fight
give in

out	in
$2-\varepsilon, 0$	$-1,-1$
2,0	$1,1^{*^{*}}$

Inflation Game

	Low	High
Low	0,0 $-2,-1$ High $1,-1$	$-1,0$

Inflation Game: LR=government, SR=consumers consumer preferences are whether or not they guess right

		Low
Low	High High 0,0 $-1,-1$ $0,-1$	

with a hard-nosed government

The Model

multiple types of long-run player $\omega \in \Omega$
Ω is a countable set of types
type is fixed forever (does not change from period to period)
$u^{1}(a, \omega)$ utility depends on type
strategy $\sigma^{1}(h, \omega)$ depends on type
types are privately known to long-run player, not known to short run player
strategy $\sigma^{2}(h)$ does not depend on type
μ probability distribution over Ω commonly known short-run player prior over types

Truly Committed Types

type $\omega\left(a^{1}\right)$ has a dominant strategy to play a^{1} in the repeated game:
$u^{1}\left(\tilde{a}^{1}, a^{2}, \omega\left(a^{1}\right)\right)= \begin{cases}1 & \tilde{a}^{1}=a^{1} \\ 0 & \tilde{a}^{1} \neq a^{1}\end{cases}$
for example
A truly committed type "can't be bargained with...can't be reasoned with...doesn't feel pity, or remorse, or fear."

Let $n(\omega)$ be the least utility received by a type ω in any Nash equilibrium
let $a^{1 *}$ be a pure strategy Stackelberg strategy for type ω_{0}, with corresponding utility
$u^{1 *}=\max _{\alpha^{1}} \min _{\alpha^{2} \in B R\left(\alpha^{1}\right)} u^{1}\left(\alpha^{1}, \alpha^{2}, \omega_{0}\right)$

Theorem: Fix ω_{0} with $\mu\left(\omega_{0}\right)>0$, and. Let $\omega^{*} \equiv \omega\left(a^{1 *}\right)$, and suppose that $\mu^{*} \equiv \mu\left(\omega^{*}\right)>0$. Then there is a constant $k\left(\mu^{*}\right)$ otherwise independent of μ, Ω such that

$$
n(\omega) \geq \delta^{k\left(\mu^{*}\right)} u^{1} *+\left(1-\delta^{k\left(\mu^{*}\right)}\right) \underline{u}^{1}
$$

Proof

define $\pi_{t} *$ to be the probability at the beginning of period t by the shortrun player that he is facing type ω^{*}

Let $N\left(\pi_{t}^{*} \leq \bar{\pi}\right)$ be the number of times $\pi_{t}^{*} \leq \bar{\pi}$

Lemma 1: Suppose that LR plays $a^{1} *$ always. Then for any history h that has positive probability

$$
\operatorname{pr}\left(N\left(\pi_{t}^{*} \leq \bar{\pi}\right)>\log \mu^{*} / \log \bar{\pi} \mid h\right)=0
$$

Lemma 2: There is $\bar{\pi}<1$ such that if $\pi_{t}^{*}>\bar{\pi}$ the SR player plays a best response to $a^{1 *}$

- Why do these Lemma's imply the theorem?
- Why is Lemma 2 true?

Proof of Lemma 1

Bayes Law

$\pi\left(\omega^{*} \mid h_{t}\right)=\frac{\pi\left(\omega^{*} \mid h_{t-1}\right) \pi\left(h_{t} \mid \omega^{*}, h_{t-1}\right)}{\pi\left(h_{t} \mid h_{t-1}\right)}$
given h_{t-1} player 1 and 2 play independently
$\pi\left(\omega^{*} \mid h_{t}\right)=\frac{\pi\left(\omega^{*} \mid h_{t-1}\right) \pi\left(h_{t} \mid \omega^{*}, h_{t-1}\right)}{\pi\left(h_{t} \mid h_{t-1}\right) \pi\left(h_{t}^{2} \mid h_{t-1}\right)}$
since player 1's type isn't known to player 2

$$
\pi\left(\omega^{*} \mid h_{t}\right)=\frac{\pi\left(\omega^{*} \mid h_{t-1}\right) \pi\left(h_{t} \mid \omega^{*}, h_{t-1}\right)}{\pi\left(h_{t}^{1} \mid h_{t-1}\right) \pi\left(h_{t}^{2} \mid \omega^{*}, h_{t-1}\right)}
$$

since player 1 's strategy is to always play $a^{1} * \pi\left(h_{t}^{1} \mid \omega^{*}, h_{t-1}\right)=1$ so

$$
\begin{aligned}
\pi\left(\omega^{*} \mid h_{t}\right) & =\frac{\pi\left(\omega^{*} \mid h_{t-1}\right) \pi\left(h_{t}^{2} \mid \omega^{*}, h_{t-1}\right)}{\pi\left(h_{t}^{1} \mid h_{t-1}\right) \pi\left(h_{t}^{2} \mid \omega^{*}, h_{t-1}\right)} \\
& =\frac{\pi\left(\omega^{*} \mid h_{t-1}\right)}{\pi\left(h_{t}^{1} \mid h_{t-1}\right)}=\frac{\pi\left(\omega^{*} \mid h_{t-1}\right)}{\pi_{t}^{*}}
\end{aligned}
$$

the conclusion:

$$
\pi\left(\omega^{*} \mid h_{t}\right)=\frac{\pi\left(\omega^{*} \mid h_{t-1}\right)}{\pi_{t}^{*}}
$$

- what does this say?
the Lemma now derives from the fact that $\pi\left(\omega^{*} \mid h_{t}\right) \leq 1$

Observational Equivalence

$\rho(y \mid \alpha)$ outcome function
$\alpha^{2} \in W\left(\alpha^{1}\right)$ if there exists $\widetilde{\alpha}^{1}$ such that $\rho\left(\cdot \mid \widetilde{\alpha}^{1}, \alpha^{2}\right)=\rho\left(\cdot \mid \alpha^{1}, \alpha^{2}\right)$ and $\alpha^{2} \in B R\left(\widetilde{\alpha}^{1}\right)$
$u^{1 *}=\max _{\alpha^{1}} \min _{\alpha^{2} \in W\left(\alpha^{1}\right)} u^{1}\left(\alpha^{1}, \alpha^{2}, \omega_{0}\right)$

Chain Store Game
strategies that are observationally equivalent

	out	in	mixed
fight give mixed	all	fight	fight
	all	give	give
	all	mixed	mixed

weak best responses
fight: out
give: in, out
mixed: in, out?
Best case fight:out so $u^{1 *}=2$

Quality Game
strategies that are observationally equivalent

	out	buy	mixed
hi all hi lo all lo mixed all mixed mixed			

weak best responses
hi: in, out
lo: out
mixed: in?, out
in every case out is a weak best response so $u^{1 *}=0$

Moral Hazard and Mixed Commitments

$\rho(y \mid \alpha)$ outcome function
expand space of types to include types committed to mixed strategies: leads to technical complications because it requires a continuum of types
$p\left(h_{t-1}\right)$ probability distribution over outcomes conditional on the history (a vector)
$p^{+}\left(h_{t-1}\right)$ probability distribution over outcomes conditional on the history and the type being in Ω^{+}

Theorem: for every $\varepsilon>0, \Delta_{0}>0$ and set of types Ω^{+}with $\mu\left(\Omega^{+}\right)>0$ there is a K such that if Ω^{+}is true there is probability less than ε that there are more than K periods with
$\left\|p^{+}\left(h_{t-1}\right)-p\left(h_{t-1}\right)\right\|>\Delta_{0}$
look for tight bounds
let n, \bar{n} be best and worst Nash payoffs to LR
try to get
$\liminf _{\delta \rightarrow 1} \underline{n}(\omega)=\limsup _{\delta \rightarrow 1} \bar{n}(\omega)=\max _{\alpha^{2} \in B R\left(\alpha^{1}\right)} u^{1}(\alpha)$
game is non-degenerate if there is no undominated pure action a^{2} such that for some $\alpha^{2} \neq a^{2}$

$$
u^{i}\left(\cdot, a^{2}\right)=u^{i}\left(\cdot, \alpha^{2}\right)
$$

counterexample: player 2 gets zero always, player 1 gets either zero or one depending only on player 2's action
game is identified if for all α^{2} that are not weakly dominated $\rho\left(\cdot \mid \alpha^{1}, \alpha^{2}\right)=\rho\left(\cdot \mid \widetilde{\alpha}^{1}, \alpha^{2}\right)$ implies $\alpha^{1}=\widetilde{\alpha}^{1}$

$$
\rho\left(\cdot \mid \alpha^{1}, \alpha^{2}\right)=\alpha^{1} R\left(\alpha^{2}\right)
$$

condition for identification $R\left(\alpha^{2}\right)$ has full row rank for all α^{2}

Patient Short Run Players: Schmidt

short run preferences $\left[\begin{array}{cc}10 & 0 \\ 0 & 1\end{array}\right]$
long run preferences
$\mu^{0}=0.1 \quad\left[\begin{array}{cc}10 & 0 \\ 0 & 1\end{array}\right] \quad$ pure coordination
$\mu^{*}=0.01 \quad\left[\begin{array}{cc}10 & 10 \\ 0 & 1\end{array}\right] \quad$ commitment type
$\mu^{i}=0.89 \quad\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right] \quad$ indifferent type
strategies:
normal: play U except if you previously did D, then switch to D
commitment: always play U
indifferent type: U until deviation then D

SR: play L then alternate between R and L (on path)
if 1 deviated to D switch to R forever
if 2 deviated play L; if 1 reacts with U continue with L reacts with D continue with R
$\delta_{1} \geq .15, \delta_{2} \geq .75$ then this is a subgame perfect equilibrium

- interesting deviation for SR when supposed to do R deviate to L; but then indifferent type switches to D forever
- for the normal type to prove he's not type "i" he must play D revealing he is not the commitment type

Suppose that LR can minmax SR in a pure strategy a^{1}

Theorem: LR gets at least $\min _{\alpha^{2} \in B R^{2}\left(a^{1}\right)} u^{1}\left(\underline{a}^{1}, \alpha^{2}\right)$
let \underline{u}^{2} be SR minmax
let \tilde{u}^{2} be second best against \underline{a}^{1}
$N=\frac{\ln \left(1-\delta_{2}\right)+\ln \left(\underline{u}^{2}-\tilde{u}^{2}\right)-\ln \left(\bar{u}^{2}-\tilde{u}^{2}\right)}{\ln \delta_{2}}$
$\varepsilon=\frac{\left(1-\delta_{2}\right)^{2}\left(\underline{u}^{2}-\tilde{u}^{2}\right)}{\left(\bar{u}^{2}-\tilde{u}^{2}\right)}-\delta_{2}^{N}\left(1-\delta_{2}\right)$

commit to \underline{a}^{1}

Lemma: suppose $a_{2}^{t+1} \notin B R\left(\underline{a}^{1}\right)$ with positive probability, then SR must believe that in $t+1, \ldots, t+N$ there is a probability of at least ε of not having \underline{a}^{1}

- why is this sufficient?

Proof of Lemma:

2 can get at least \underline{u}^{2} so
$\left(1-\delta_{2}\right) u\left(\alpha^{1}, a_{2}^{t+1}\right)+\delta_{2} V \geq \underline{u}^{2}$
if $\operatorname{pr}\left(\underline{a}^{1}\right)>1-\varepsilon$ in $t+1, \ldots, t+N$
suppose the optimum is not a br; consider deviating to a br gain at least $\underline{u}^{2}-\tilde{u}^{2}$ at $t+1$; starting at $t+2$ earn no less than \underline{u}^{2}
if you hadn't deviated, starting at $t+2$ would have earned at most
$\left(1-\delta_{2}\right) \sum_{t=1}^{N} \delta_{2}^{t}\left(\underline{u}^{2}(1-\varepsilon)+\varepsilon \bar{u}^{2}\right)+\delta_{2}^{N+1} \bar{u}^{2}$
but we chose N and ε so that the loss exceeds the gain

