Problem Set 4

1. Discounting

There are two investment opportunities available to you, Hiccup and TwoStep. Hiccup returns a utility of 4 on odd periods and 1 on even periods. TwoStep returns a utility of 10 for the first period and then always a utility of 2 . Given a discount factor δ, write down the infinite horizon average discounted utility from Hiccup and TwoStep. Are there values of δ for which one investment opportunity is better than the other? If so, specify the values of such δ, and name the corresponding preferred investment option.

2. The Folk Theorem

For each of the following simultaneous move games, find the static Nash equilibria and give an accurate sketch of the socially feasible individually rational region.
a)

	L	R
U	8,6	2,9
D	5,0	3,1

b)

	E	W
N	7,7	4,0
S	0,4	0,0

3. Equilibrium in a Repeated Game

Consider the simultaneous move stage game

	H	L
H	1,1	$-1,110$
L	$100,-1$	0,0

Consider the "grim trigger" strategy of playing H in period one; playing H as long as both players have played only H in the past, and playing L otherwise. For what values of the common discount factor, δ, do these strategies form a subgame perfect equilibrium.

