Copyright (C) 2001 David K. Levine

This document is an open textbook; you can redistribute it and/or modify it under the terms of version 1 of the open text license amendment to version 2 of the GNU General Public License. The open text license amendment is published by Michele Boldrin et al at http://levine.sscnet.ucla.edu/general/gpl.htm; the GPL is published by the Free Software Foundation at http://www.gnu.org/copyleft/gpl.html.

Repeated Games

Long-Run versus Short-Run Player

a fixed simultaneous move stage game

Player 1 is long-run with discount factor δ
actions $a^{1} \in A^{1}$ a finite set
utility $u^{1}\left(a^{1}, a^{2}\right)$

Player 2 is short-run with discount factor 0
actions $a^{2} \in A^{2}$ a finite set
utility $u^{2}\left(a^{1}, a^{2}\right)$
the "short-run" player may be viewed as a kind of "representative" of many "small" long-run players

Repeated Game

history $h_{t}=\left(a_{1}, a_{2}, \ldots, a_{t}\right)$
null history h_{0}
behavior strategies $\alpha_{t}^{i}=\sigma^{i}\left(h_{t-1}\right)$

Equilibrium

Nash: usual definition
Subgame perfect: usual definition, Nash after each history

Observation: the repeated static equilibrium of the stage game is a subgame perfect equilibrium of the finitely or infinitely repeated game
strategies: play the static equilibrium strategy no matter what
"perfect equilibrium with public randomization"
may use a public randomization device at the beginning of each period to pick an equilibrium
key implication: set of equilibrium payoffs is convex

Example: chain store game

normal form
fight
out

give in | $2,0^{*}$ | $-1,-1$ |
| :--- | :--- |
| 2,0 | $1,1^{* *}$ |

Nash

subgame perfect is In, Give In
variation on chain store

out
fight give in
$2-\varepsilon, 0$ $-1,-1$ 2,0 $1,1^{* *}$

now the only equilibrium is In, Give In
payoff at static Nash equilibrium to LR player: 1
precommitment or Stackelberg equilibrium precommit to fight get $2-\varepsilon$
minmax payoff to LR player: 1 by giving in
utility to long-run player
precommitment/Stackelberg $=2-\varepsilon$
best dynamic equilibrium = ?
Set of dynamic equilibria
static Nash = 1
worst dynamic equilibrium = ?
minmax $=1$

Repeated Chain Store

finitely repeated game
final period: In, Give, so in every period
Do you believe this??

Infinitely repeated game

begin by playing Out, Fight
if Fight has been played in every previous period then play Out, Fight
if Fight was not played in a previous period play In, Give In (reversion to static Nash)
claim: this is subgame perfect
clearly a Nash equilibrium following a history with Give In

SR play is clearly optimal
for LR player
may Fight and get $2-\varepsilon$
or give in and get $(1-\delta) 2+\delta 1$
so condition for subgame perfection

$$
\begin{aligned}
& 2-\varepsilon \geq(1-\delta) 2+\delta 1 \\
& \delta \geq \varepsilon
\end{aligned}
$$

equilibrium utility for LR

General Deterministic Case

Fudenberg, Kreps and Maskin [1990]
utility to long-run player
$\max u^{1}(a)$
mixed precommitment/Stackelberg
pure precommitment/Stackelberg
[\bar{v}^{1} best dynamic equilibrium
Set of dynamic equilibria
static Nash
\underline{v}^{1} worst dynamic equilibrium
minmax
$\min u^{1}(a)$

Characterization of Equilibrium Payoff $\alpha=\left(\alpha^{1}, \alpha^{2}\right)$ where α^{2} is a b.r. to α^{1}
α represent play in the first period of the equilibrium
$w^{1}\left(a^{1}\right)$ represents the equilibrium payoff beginning in the next period
$v^{1} \geq(1-\delta) u^{1}\left(a^{1}, \alpha^{2}\right)+\delta w^{1}\left(a^{1}\right)$
$v^{1}=(1-\delta) u^{1}\left(a^{1}, \alpha^{2}\right)+\delta w^{1}\left(a^{1}\right), \alpha^{1}\left(a^{1}\right)>0$
$\underline{v}^{1} \leq w^{1}\left(a^{1}\right) \leq \bar{v}^{1}$

Characterization of Best/Worst Equilibrium Payoffs

 maximize \bar{v}^{1}, minimize \underline{v}^{1} subject to$$
\begin{aligned}
& \alpha=\left(\alpha^{1}, \alpha^{2}\right) \text { where } \alpha^{2} \text { is a b.r. to } \alpha^{1} \\
& \bar{v}^{1} \geq(1-\delta) u^{1}\left(a^{1}, \alpha^{2}\right)+\delta w^{1}\left(a^{1}\right) \\
& \bar{v}^{1}=(1-\delta) u^{1}\left(a^{1}, \alpha^{2}\right)+\delta w^{1}\left(a^{1}\right), \alpha^{1}\left(a^{1}\right)>0 \\
& \underline{v}^{1} \geq(1-\delta) u^{1}\left(a^{1}, \alpha^{2}\right)+\delta w^{1}\left(a^{1}\right) \\
& \underline{v}^{1}=(1-\delta) u^{1}\left(a^{1}, \alpha^{2}\right)+\delta w^{1}\left(a^{1}\right), \alpha^{1}\left(a^{1}\right)>0 \\
& \underline{v}^{1} \leq w^{1}\left(a^{1}\right) \leq \bar{v}^{1}
\end{aligned}
$$

Remarks

1) problem simplifies if static Nash $=$ minmax
2) if $v^{1} \geq(1-\delta) u^{1}\left(a^{1}, \alpha^{2}\right)+\delta w^{1}\left(a^{1}\right)$ then $v^{1} \geq(1-\delta) u^{1}\left(a^{1}, \alpha^{2}\right)+\delta \underline{v}^{1}$
simplification: split into two problems by defining n^{1} as static Nash payoff

$$
\begin{aligned}
& n^{1} \leq w^{1}\left(a^{1}\right) \leq \bar{v}^{1} \\
& \underline{v}^{1} \leq w^{1}\left(a^{1}\right) \leq n^{1}
\end{aligned}
$$

as $\delta \rightarrow 1 w^{1}\left(a^{1}\right) \rightarrow \bar{v}^{1}, \underline{v}^{1}$ in the two problems so this is OK

max problem

fix $\alpha=\left(\alpha^{1}, \alpha^{2}\right)$ where α^{2} is a b.r. to α^{1}
$\bar{v}^{1} \geq(1-\delta) u^{1}\left(a^{1}, \alpha^{2}\right)+\delta w^{1}\left(a^{1}\right)$
$\bar{v}^{1}=(1-\delta) u^{1}\left(a^{1}, \alpha^{2}\right)+\delta w^{1}\left(a^{1}\right), \alpha^{1}\left(a^{1}\right)>0$
$n^{1} \leq w^{1}\left(a^{1}\right) \leq \bar{v}^{1}$
how big can $w^{1}\left(a^{1}\right)$ be in = case?

Biggest when $u^{1}\left(a^{1}, \alpha^{1}\right)$ is smallest, in which case
$w^{1}\left(a^{1}\right)=\bar{v}^{1}$
$\bar{v}^{1}=(1-\delta) u^{1}\left(a^{1}, \alpha^{2}\right)+\delta \bar{v}^{1}$
conclusion for fixed α
$\min _{a^{1} \mid \alpha\left(a^{1}\right)>0} u^{1}\left(a^{1}, \alpha^{2}\right)$
i.e. worst in support
$\bar{v}^{1}=\max _{\alpha^{2} \in B R^{2}\left(\alpha^{1}\right)} \min _{a^{1} \mid \alpha\left(a^{1}\right)>0} u^{1}\left(a^{1}, \alpha^{2}\right)$
observe:
mixed precommitment $\geq \bar{v}^{1} \geq$ pure precommitment

Modified Chain Store Example

	out	in
fight	$2-\varepsilon, 0$	$-1,-1$
give in	2,0	1,1

p (fight)	BR	worst in support
1	out	$2-\varepsilon$
$1 / 2<p<1$	out	$2-\varepsilon$
$0<p<1 / 2$	in	-1
$p=0$	in	1

check: $w^{1}\left(a^{1}\right)=\frac{\bar{v}^{1}-(1-\delta) u^{1}\left(a^{1}, \alpha^{2}\right)}{\delta} \geq n^{1}$ as $\delta \rightarrow 1$ then $w^{1}\left(a^{1}\right) \rightarrow \bar{v}^{1} \geq n^{1}$
min problem
fix $\alpha=\left(\alpha^{1}, \alpha^{2}\right)$ where α^{2} is a b.r. to α^{1}
$\underline{v}^{1} \geq(1-\delta) u^{1}\left(a^{1}, \alpha^{2}\right)+\delta w^{1}\left(a^{1}\right)$
$\underline{v}^{1} \leq w^{1}\left(a^{1}\right) \leq n^{1}$

Biggest $u^{1}\left(a^{1}, \alpha^{1}\right)$ must have smallest $w^{1}\left(a^{1}\right)=\underline{v}^{1}$
$\underline{v}^{1}=(1-\delta) u^{1}\left(a^{1}, \alpha^{2}\right)+\delta \underline{v}^{1}$
conclusion
$\underline{v}^{1}=\max u^{1}\left(a^{1}, \alpha^{2}\right)$
or
$\underline{v}^{1}=\min _{\alpha^{2} \in B R^{2}\left(\alpha^{1}\right)} \max u^{1}\left(a^{1}, \alpha^{2}\right)$
that is, constrained minmax

Sample Calculation

	L	M	R
U	$0,-3$	1,2	0,3
D	$0,3^{*}$	2,2	0,0

static Nash gives 0
minmax gives 0
worst payoff in fact is 0
pure precommitment also 0

Mixed Precommitment

p is probability of up
to get more than 0 must get $S R$ to play M
$-3 p+(1-p) 3 \leq 2$ and $3 p \leq 2$
first one
$-3 p+(1-p) 3 \leq 2$
$-3 p-3 p \leq-1$
$p \geq 1 / 6$
second one
$3 p \leq 2$
$p \leq 2 / 3$
want to play D so take $p=1 / 6$
get $1 / 6+10 / 6=11 / 6$
utility to long-run player
$\max u^{1}(a)=2$
mixed precommitment/Stackelberg=11/16
\bar{v}^{1} best dynamic equilibrium=1
pure precommitment/Stackelberg=0
Set of dynamic equilibria
static Nash=0
\underline{v}^{1} worst dynamic equilibrium=0
minmax=0
$\min u^{1}(a)=0$

Calculation of best dynamic equilibrium payoff

p is probability of up

p	${ }^{2} R^{2}$	worst in support
$<1 / 6$	L	0
$1 / 6<p<5 / 6$	M	1
$\mathrm{p}>5 / 6$	R	0

so best dynamic payoff is 1

Moral Hazard

choose $a^{i} \in A$
observe $y \in Y$
$\rho(y \mid a)$ probability of outcome given action profile
private history: $h^{i}=\left(a_{1}^{i}, a_{2}^{i}, \ldots\right)$
public history: $h=\left(y_{1}, y_{2}, \ldots\right)$
strategy $\sigma^{i}\left(h^{i}, h\right) \in \Delta\left(A^{i}\right)$
"public strategies"
perfect public equilibrium

Moral Hazard Example

mechanism design problem
each player is endowed with one unit of income
players independently draw marginal utilities of income $\eta \in\{\bar{\eta}, \underline{\eta}\}$
player 2 (SR) has observed marginal utility of income player 1 (LR) has unobserved marginal utility of income
player 2 decides whether or not to participate in an insurance scheme
player 1 must either announce his true marginal utility or he may announce η independent of his true marginal utility
non-participation: both players get $\gamma=\frac{\bar{\eta}+\eta}{2}$
participation: the player with the higher marginal utility of income gets both units of income
normal form
non-participation participate
truth
lie

γ, γ	$\frac{\bar{\eta}+\gamma}{2}, \frac{\bar{\eta}+\gamma}{2}$
γ, γ	$\frac{3 \gamma}{2}, \frac{\bar{\eta}}{2}$

$p^{*}=\frac{\underline{\underline{\eta}}}{\gamma}$ makes player 2 indifferent

```
\max u'(a)=\frac{3\gamma}{2}
    mixed precommitment/Stackelberg= =\frac{\overline{\eta}+\gamma}{2}+(1-\frac{\underline{\eta}}{\gamma})\frac{\underline{\eta}}{2}
    \mp@subsup{v}{}{1}}\mathrm{ best dynamic equilibrium }=\frac{\overline{\eta}+\gamma}{2
    pure precommitment/Stackelberg=}\frac{\overline{\eta}+\gamma}{2
    Set of dynamic equilibria
    static Nash=\gamma
    \underline { v } ^ { 1 } \text { worst dynamic equilibrium } = \gamma
    minmax = 
    min}\mp@subsup{u}{}{1}(a)=
```


Solving the moral example

player 1 plays "truth" with probability p * or greater
player 2 plays "participate"

$$
\begin{aligned}
& \bar{v}=(1-\delta) \frac{\bar{\eta}+\gamma}{2}+\delta\left(\frac{1}{2} w(\underline{\eta})+\frac{1}{2} w(\bar{\eta})\right) \\
& \bar{v} \geq(1-\delta) \frac{3 \gamma}{2}+\delta w(\bar{\eta}) \\
& \bar{v} \geq w(\underline{\eta}), w(\bar{\eta})
\end{aligned}
$$

$w(\bar{\eta})$ must be as large as possible, so inequality must bind; $w(\underline{\eta})=\bar{v}$

$$
\bar{v}=(1-\delta) \frac{3 \gamma}{2}+\delta w(\bar{\eta})
$$

solve two equations

$$
\begin{aligned}
& \bar{v}=\bar{\eta}-\frac{\gamma}{2} \\
& w(\bar{\eta})=\frac{\bar{v}-(1-\delta) 3 \gamma / 2}{\delta}
\end{aligned}
$$

check that $w(\bar{\eta}) \geq \gamma$
leads to $\delta \geq 2\left(2-\frac{\bar{\eta}}{\gamma}\right)$
from $\delta<1$ this implies
$\bar{\eta}>3 \underline{\eta}$

Long-Run Players and the Folk Theorem

Folk Theorems

- socially feasible
- individually rational

Statement of Folk Theorem

	Player 2	
Player 1	don't confess	confess
don't confess	32,32	28,35
confess	35,28	30,30

- Nash with time averaging
- perfect Nash threats with discounting
- Fudenberg and Maskin [1986]

The Downside of the Folk Theorem

4,4	1,1
1,1	0,0

$\delta=3 / 4$
D in first period
If DD in first period UU forever after
Else start over
In equilibrium get $(1 / 4) 0+(3 / 4) 4=3$
Deviation get $(1 / 4) 1+(3 / 4) 3=10 / 4=2.5$

In general want $(1-\delta) 0+\delta 4=\delta 4 \geq(1-\delta) 1+\delta^{2} 4$ Or

$$
\begin{aligned}
& 0 \geq \delta^{2} 4-5 \delta+1 \\
& \delta=\frac{5 \pm \sqrt{25-4}}{2}=\frac{5-\sqrt{21}}{2} \approx .2087
\end{aligned}
$$

For δ close to 1 the worst equilibrium is near 1 for both players

Tit-for-tat

Play the same thing that your opponent did in the previous period, cooperate in the first period

3,3	0,4
4,0	1,1

If your opponent is playing tit-for-tat, use dynamic programming
Four markov strategies:
Do the same as opponent: 3
Do opposite of opponent: $\frac{1-\delta}{1-\delta^{2}} 4=\frac{4}{1+\delta}(=3$ at $\delta=1 / 3)$
Always cooperate: 3
Always cheat: $(1-\delta) 4+\delta 1=4-3 \delta(=3$ at $\delta=1 / 3)$
So tit-for-tat an equilibrium for $\delta \geq 1 / 3$

Matching and Information Systems

Juvenal in the first century A.D.
"Sed quis custodiet ipsos custodes?"
translation: "Who shall guard the guardians?"
answer: they shall guard each other.

Contagion Equilibrium

players randomly matched in a population; observe only opponent's current play
Ellison [1993]: could have cooperation due to contagion effects

3,3	0,4
4,0	1,1

Strategy: cooperate as long as everyone you have ever met cooperated; if you have ever met a cheater, then cheat
With these strategies the number of cheaters is a Markov chain with two aborbing states: all cheat, none cheat

Playing the proposed equilibrium strategy results in non cheat and a utility of 3 ; deviating results eventually in all cheat; this aborbing state is approached exponentially fast; the amount of time depends on the population size, but not the discount factor, so for discount factor close enough to one it is optimal not to cheat

But contagion effects diminish as population size grows, and the equilibrium is not robust to noise, which will trigger a collapse

Information Systems-Example

Overlapping generations; young matched against old:
Only the young have a move - give a gift to old person
Gift worth $x>1$ to old person; costs 1 to give the gift
Information system: assigns a young person a flag based on their action and the old person's flag
Consider the following information system and strategies:
Cooperate against a green flag -> green flag
Cheat against a red flag -> green flag

On the other hand
Cheat against green flag -> red flag
Cooperate against red flag -> red flag

If you meet a green flag:
Cooperate you get $x-1$
Cheat you get 0
If you meet a red flag
Cheat you get x
Cooperate you get -1
So it is in fact optimal to cooperate against green (your team) and cheat against red (the other team)
Notice that this is a strict Nash equilibrium if there is noise (so that there are some red flags)
Notice that always cheat no matter what the flags is also a strict Nash equilibrium

Information Systems-Folk Theorem

Kandori [1992]
$u^{i}(a)$
I a finite set of information states
$\eta: A \times I^{2} \rightarrow I$ an information system
if at t you and your opponent played a_{t} and had states $\eta_{t}^{i}, \eta_{t}^{-i}$, then your next state is $\eta_{t+1}^{i}=\eta\left(a_{t}, \eta_{t}^{i}, \eta_{t}^{-i}\right)$
players randomly matched in a population observe their current opponents current state

Folk Theorem for information systems: socially feasible individually rational payoff - exists an information system that supports it

Example

Prisoner's dilemma

$$
\begin{aligned}
& \text { C } \quad \mathrm{D} \\
& I=\{r, g\} \\
& \eta\left(a^{i}, \eta^{-i}\right)= \begin{cases}G & \left(a^{i}, \eta^{-i}\right)=C, G \\
R & \left(a^{i}, \eta^{-i}\right)=C, R \\
R & \left(a^{i}, \eta^{-i}\right)=D, G \\
G & \left(a^{i}, \eta^{-i}\right)=D, R\end{cases}
\end{aligned}
$$

"green team strategy"
defect on red
cooperate on green

$$
\begin{aligned}
& V(g)=x \\
& V(r)=\delta x
\end{aligned}
$$

C $(1-\delta) x+\delta V(g)=x$
$\mathrm{D}^{(1-\delta)(x+1)+\delta V(r)=(1-\delta)(x+1)+\delta^{2} x=}$
$(1-\delta)+\left(1-\delta+\delta^{2}\right) x$

$$
x \geq(1-\delta)+\left(1-\delta+\delta^{2}\right) x
$$

So $\delta(1-\delta) x \geq(1-\delta)$ $\delta \geq 1 / x$

