1. Principal Agent

a)

	0	1
Pay	0,0	1,1
Not Pay	0,0 [unique pure Nash]	$5,-1$

b) 1 can mix up to 50% on pay, 2 chooses 0
c) pay is weakly dominated for 1
d) pure is (pay,1); mixed is $(50-50,1)$
e) minmax for player 1 is 0 ; minmax for player 2 is 0
f) worst equilibrium is 0 ; best equilibrium is 1 provided
$(1-\delta) 4-\delta 1 \leq 0$
$4 / 5 \leq \delta$
g) many answers: most obvious - play pay, 1 unless there has been a deviation, then switch to 0
h) convex hull of 0,$0 ; 1,1 ; 5,-1$ above the point 0,0

2. Auto Repair

a) normal form

	Repair	Not
Repair	$\mathrm{p}-\mathrm{C}, \theta \mathrm{v}-\mathrm{p}$	$0, \pi \mathrm{~V}$
Not	$\mathrm{P}, \pi \mathrm{V}-\mathrm{p}$	$0, \pi \mathrm{~V}$ [unique pure Nash]

b) some mixed Nash but all yield payoff 0 ; minmax for 1 is 0 ; pure precommitment is repair $\mathrm{P}-\mathrm{C}$; mixed precommitment mix so that 2 is indifferent
$\alpha \theta \mathrm{V}+(1-\alpha) \pi \mathrm{V}=\pi \mathrm{V}+\mathrm{p}$
$\alpha=\frac{\mathrm{P}}{(\theta-\pi) \mathrm{V}}$
so payoff is $\mathbf{P}-\alpha \mathbf{C}$.
c) worst is obviously 0
d)
$\mathrm{v}=(1-\delta)(\mathrm{p}-\mathrm{c})+\delta(\theta \mathrm{v}+(1-\theta) \mathrm{w}(\mathrm{n}))$
$\mathrm{V}=(1-\delta) \mathrm{p}+\delta(\pi \mathrm{V}+(1-\pi) \mathrm{w}(\mathrm{n}))$

$$
\begin{aligned}
& \mathrm{v}=(1-\delta)(\mathrm{p}-\mathrm{c})+\delta(\theta \mathrm{v}+(1-\theta) \mathrm{w}(\mathrm{n})) \\
& \frac{(1-\delta \pi)}{(1-\pi)} v-\frac{(1-\delta)}{(1-\pi)} p=\delta w(n) \\
& \mathrm{v}=(1-\delta)(\mathrm{p}-\mathrm{c})+\delta \theta \mathrm{v}+(1-\theta)\left[\frac{(1-\delta \pi)}{(1-\pi)} \mathrm{v}-\frac{(1-\delta)}{(1-\pi)} \mathrm{p}\right] \\
& \mathrm{v}\left[1-\frac{1-\theta+\delta \theta-\delta \pi}{(1-\pi)}\right]=(1-\delta)(\mathrm{p}-\mathrm{c})-(1-\theta) \frac{(1-\delta)}{(1-\pi)} \mathrm{p} \\
& \mathrm{v}(\theta-\pi)=(1-\pi)(\mathrm{p}-\mathrm{c})-(1-\theta) \mathrm{p}=(\theta-\pi) \mathrm{p}-(1-\pi) \mathrm{c} \\
& \mathrm{v}=\mathrm{p}-\frac{1-\pi}{\theta-\pi} \mathrm{c} \\
& \mathrm{w}(\mathrm{n})=\frac{(1-\delta \pi)}{\delta(1-\pi)} \mathrm{v}-\frac{(1-\delta)}{\delta(1-\pi)} \mathrm{p} \\
& =\frac{(1-\delta \pi)}{\delta(1-\pi)}\left[\mathrm{p}-\frac{1-\pi}{\theta-\pi} \mathrm{c}\right]-\frac{(1-\delta)}{\delta(1-\pi)} \mathrm{p} \\
& =\mathrm{p}-\frac{(1-\delta \pi)}{\delta(\theta-\pi)} \mathrm{c} \geq 0 \\
& \delta \geq \frac{\mathrm{c}}{\mathrm{p}(\theta-\pi)+\pi \mathrm{C}}<1 \\
& (\theta-\pi) p-c>-\pi c
\end{aligned}
$$

3. Auction

a) dominant strategy to announce truthfully; $3 / 4$ chance one person has low value and get revenue $\$ 8 ; 1 / 4$ chance both have high value and get revenue $\$ 12$, so expected revenue is 9 .
b) this is a 2×2 symmetric game; strategy is what to bid when type is $\$ 12$
calculate payoff to $\$ 12$ type only, since only that type has a choice
both bid \$12
$1 / 2$ opponent bids 12 and is 12 : you win $1 / 2$ and get 0 ; lose $1 / 2$ and get 6 , expected value 3
$1 / 2$ opponent bids 8 and is 8 ; you win always and get 4 , expected value 4
you bid 8 , he bids 12
$1 / 2$ opponent bids 12 and is 12 ; you lose and get 6 ; expected value 6
$1 / 2$ opponent bids 8 and is 8 ; you win $1 / 2$ and get 4 ; lose $1 / 2$ and get 4 ; expected value 4
you bid 12 he bids 8
you always win and get 4
both bid $\$ 8$
$1 / 4$ chance win versus 12 , getting 4
$1 / 4$ chance lose versus 12 , getting 6
$1 / 4$ chance win versus 8 , getting 4

1/4 chance lose versus 8 , getting 4
$\$ 12$ $\$ 8$ $\$ 12$ $3.5,3.5$ 4,5 $\$ 8$ 5,4 $4.25,4.25$

So bidding 8 is dominant strategy equilibrium, and expected revenue to the seller is $\$ 8$.

4) Mechanism Design

(1/3) $[u(H, H ; H)+u(L, H ; L)+u(H, L ; H)]$
$+(1 / 3)[t(H, H)+t(L, H)+t(H, L)]=$
$(x-1) / 3+(1 / 3)[t(H, H)+t(L, H)+t(H, L)] \geq$
(1/ 3) $[u(H, H ; H)+u(L, H ; H)+u(H, L ; H)]$
$+(1 / 3)[\mathrm{t}(\mathrm{H}, \mathrm{H})+\mathrm{t}(\mathrm{H}, \mathrm{H})+\mathrm{t}(\mathrm{H}, \mathrm{L})]=$
$x / 3+(1 / 3)[2 t(H, H)+t(H, L)]$
$(x-1) / 3+(1 / 3)[t(H, H)+t(L, H)+t(H, L)] \geq$
$x / 3+(1 / 3)[2 t(H, H)+t(H, L)]$
$t(L, H)-t(H, H) \geq 1$
$t(H, H)=0 \Rightarrow t(L, H)=1$ and then choosing $t(H, L)=-1$ give the other constraint these constraints can be interpreted as "budget balance" when there are two players.

