### Copyright (C) 2001 David K. Levine

This document is an open textbook; you can redistribute it and/or modify it under the terms of version 1 of the open text license amendment to version 2 of the GNU General Public License. The open text license amendment is published by Michele Boldrin et al at http://levine.sscnet.ucla.edu/general/gpl.htm; the GPL is published by the Free Software Foundation at http://www.gnu.org/copyleft/gpl.html.

# **Experimental Economics**

by David K. Levine Last modified: September 1, 2005

## **Centipede Game: Palfrey and McKelvey**



Numbers in square brackets correspond to the observed conditional probabilities of play corresponding to rounds 6-10, stakes 1x below.

This game has a unique self-confirming equilibrium; in it player 1 with probability 1 plays  $T_1$ 

### Summary of Experimental Results

| Trials<br>/ | Rnds | Stake | Case | Expec  | ted Loss | 5      | Max     | Ratio |
|-------------|------|-------|------|--------|----------|--------|---------|-------|
| Rnds        |      |       |      | PI 1   | PI 2     | Both   | Gain    |       |
| 29*         | 6-10 | 1x    | Н    | \$0.00 | \$0.03   | \$0.02 | \$4.00  | 0.4%  |
| 29*         | 6-10 | 1x    | U    | \$0.26 | \$0.17   | \$0.22 | \$4.00  | 5.4%  |
|             | WC   | 1x    | Н    |        |          | \$0.80 | \$4.00  | 20.0% |
| 29          | 1-10 | 1x    | Н    | \$0.00 | \$0.08   | \$0.04 | \$4.00  | 1.0%  |
| 10          | 1-10 | 4x    | Н    | \$0.00 | \$0.28   | \$0.14 | \$16.00 | 0.9%  |

Rnds=Rounds, WC=Worst Case, H=Heterogeneous, U=Unitary

\*The data on which from which this case is computed is reported above.

### Comments on Experimental Results

- heterogeneous loss per player is small; because payoffs are doubling in each stage, equilibrium is very sensitive to a small number of player 2's giving money away at the end of the game.
- unknowing losses far greater than knowing losses
- quadrupling the stakes very nearly causes  $\overline{\epsilon}$  to quadruple
- theory has substantial predictive power: see WC
- losses conditional on reaching the final stage are quite large-inconsistent with subgame perfection. McKelvey and Palfrey
  estimated an incomplete information model where some "types" of
  player 2 liked to pass in the final stage. This cannot explain many
  players dropping out early so their estimated model fits poorly.

## **Best Shot Game: Prasnikar and Roth**



| X | W(x)   | <i>C(x)</i> |
|---|--------|-------------|
| 0 | \$0.00 | \$0.00      |
| 1 | \$1.00 | \$0.82      |
| 2 | \$1.95 | \$1.64      |
| 3 | \$2.85 | \$2.46      |
| 4 | \$3.70 | \$3.28      |
| 5 | \$4.50 | \$4.10      |
| 6 | \$5.25 | \$4.92      |
| 7 | \$5.95 | \$5.74      |
| 8 | \$6.60 | \$6.50      |

Discussion of Best Shot

if the other player makes any contribution at all, it is optimal to contribute nothing

unique subgame perfect equilibrium player 1 contributes nothing

another Nash equilibrium player 2 to contributes nothing regardless of player 1's play

it is not consistent with Nash equilibrium for some player 1's to play 0 and others 4

any other probability distribution over the two Nash equilibria are heterogeneous self-confirming

## Summary of Results from Best Shot

| Trials | Rnds | Info | Case | Expected Loss |        |        | Max    | Ratio |
|--------|------|------|------|---------------|--------|--------|--------|-------|
|        |      |      |      | PI 1          | PI 2   | Both   | Gain   |       |
| 8      | 8-10 | full | Н    | \$0.00        | \$0.12 | \$0.06 | \$2.06 | 2.9%  |
| 8      | 8-10 | full | U    | \$0.00        | \$0.12 | \$0.06 | \$2.06 | 2.9%  |
| 10     | 8-10 | part | Н    | \$0.01        | \$0.15 | \$0.08 | \$2.06 | 3.9%  |
| 10     | 8-10 | part | U    | \$0.39        | \$0.15 | \$0.27 | \$2.06 | 13.%  |
|        | WC   |      | Н    |               |        | \$3.41 | \$2.06 | 165%  |

Rnds=Rounds, WC=Worst Case, H=Heterogeneous, U=Unitary

### Comments on Best Shot

- In the full information case and partial information heterogeneous case player 2 occasionally contributes less than 4 when player 1 has contributed nothing; Note that the player who contributes nothing gets \$3.70 against \$0.42 for the opponent who contributes 4
- · larger losses than centipede game with lower stakes
- full information case heterogeneous losses equal unitary lossesplayer 1 never contributed anything, and so never had a loss with either type of information; all losses by player 2 are necessarily knowing losses
- In the partial information case occasionally player 1 contributed 4 and player 2 contributed nothing: looks like public randomization between the two Nash equilibria. This is inconsistent with Nash equilibrium but consistent with self-confirming equilibrium.





| Trials | Rnd | Cntry | Case | Expected Loss |        |        | Max     | Ratio |
|--------|-----|-------|------|---------------|--------|--------|---------|-------|
|        |     | Stake |      | PI 1          | PI 2   | Both   | Gain    |       |
| 27     | 10  | US    | Н    | \$0.00        | \$0.67 | \$0.34 | \$10.00 | 3.4%  |
| 27     | 10  | US    | U    | \$1.30        | \$0.67 | \$0.99 | \$10.00 | 9.9%  |
| 10     | 10  | USx3  | Н    | \$0.00        | \$1.28 | \$0.64 | \$30.00 | 2.1%  |
| 10     | 10  | USx3  | U    | \$6.45        | \$1.28 | \$3.86 | \$30.00 | 12.9% |
| 30     | 10  | Yugo  | Н    | \$0.00        | \$0.99 | \$0.50 | \$10?   | 5.0%  |
| 30     | 10  | Yugo  | U    | \$1.57        | \$0.99 | \$1.28 | \$10?   | 12.8% |
| 29     | 10  | Jpn   | Н    | \$0.00        | \$0.53 | \$0.27 | \$10?   | 2.7%  |
| 29     | 10  | Jpn   | U    | \$1.85        | \$0.53 | \$1.19 | \$10?   | 11.9% |
| 30     | 10  | Isrl  | Н    | \$0.00        | \$0.38 | \$0.19 | \$10?   | 1.9%  |
| 30     | 10  | Isrl  | U    | \$3.16        | \$0.38 | \$1.77 | \$10?   | 17.7% |
|        | WC  | _     | Н    | _             |        | \$5.00 | \$10.00 | 50.0% |

Rnds=Rounds, WC=Worst Case, H=Heterogeneous, U=Unitary

#### Comments on Ultimatum

- every offer by player 1 is a best response to beliefs that all other offers will be rejected so player 1's heterogeneous losses are always zero.
- big player 1 losses in the unitary case
- player 2 losses all knowing losses from rejected offers; magnitudes indicate that subgame perfection does quite badly
- as in centipede, tripling the stakes increases the size of losses a bit less than proportionally (losses roughly double).

### Raw US Data for Ultimatum

| X      | Offers | Rejection Probability |
|--------|--------|-----------------------|
| \$2.00 | 1      | 100%                  |
| \$3.25 | 2      | 50%                   |
| \$4.00 | 7      | 14%                   |
| \$4.25 | 1      | 0%                    |
| \$4.50 | 2      | 100%                  |
| \$4.75 | 1      | 0%                    |
| \$5.00 | 13     | 0%                    |
|        | 27     |                       |
|        | 1      |                       |

US \$10.00 stake games, round 10