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1 The Extensive Form of a Game

First I formally define a game in extensive form, and then I look at mixed and behavior strategies.

1.1 Formal Description of a Game

Perhaps obsessively, I will avoid reference to any objects that aren’t derived explicitly from terminal
nodes or players. I won’t distinguish games that differ by redundant moves, i.e., branches like this.

bir rrr r
Formally, we begin with a finite set Z of terminal nodes. Let X ⊂ 2Z be a family of subsets of Z.
Call X a rooted tree over Z if it satisfies the following three conditions:

1. Z ∈ X (there is a root node),

2. {z} ∈ X for every z ∈ Z (exhaustion of alternatives),

3. For any x, y ∈ X, if x ∩ y 6= ∅ then either x ⊂ y or y ⊂ x (uniqueness of paths).1

We say that y is a successor of x if y ⊂ x. The interpretation of a node x is that it fully characterizes
(and modulo redundant nodes is also characterized by) the set of possible terminal nodes that are
reachable from x. This motivates defining Z as the root node, and {z} as a terminal node.

∗Please send any comments to dmr@ucla.edu.
†Copyright (C) 2003, David Rahman. This document is an open textbook; you can redistribute it and/or modify it

under the terms of version 1 of the open text license amendment to version 2 of the GNU General Public License. The

open text license amendment is published by Michele Boldrin et al at http://www.dklevine.com/general/gpl.html;

the GPL is published by the Free Software Foundation at http://www.gnu.org/copyleft/gpl.html.
1My convention is that ⊂ denotes weak inclusion (so x ⊂ x).
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For any two nodes x ⊃ y, the partial path from x to y is denoted and defined as

[x, y] := {w ∈ X : x ⊃ w ⊃ y} .

By definition, there is only one partial path from x to y. In particular, every terminal node {z} has
a unique path to it from the root node Z. The set of nonterminal nodes is X \ Z.2

Let S(x) = {y : [x, y] = {x, y}} be the set of immediate successors of x.3 A nodal decision is
a partial path [x, y] with y ∈ S(x). A nodal decision problem is the set of possible decisions
[x, S(x)] = {[x, y] : y ∈ S(x)}. Hence, each node is uniquely associated with a decision problem.

A decision structure for Z is a triple (X, H,A) satisfying:

1. X is a rooted tree over Z,

2. H is a partition of the nonterminal nodes X \ Z such that for every h ∈ H and x, y ∈ h,
|S(x)| = |S(y)|, that is, x and y have the same number of immediate successors,

3. A is a correspondence mapping each information set h ∈ H to a subset

A(h) ⊂
∏
x∈h

[x, S(x)]

such that for any x ∈ h and y ∈ S(x), there is a unique a ∈ A(h) with a(x) = [x, y].

We now define players’ tastes and their turns in the game. Let I be a set of players, with i’s utility
function ui : Z → R defined on terminal nodes. It remains is to allocate information sets to players.

An allocation of turns and tastes to I is a triple (u, T, µ) such that u : I × Z → R is a profile of
utility functions, T : H → I ∪ {N} is an allocation of turns4 (i.e., information sets) to players, and
µ belongs to ∏

h∈T−1(N)

∆(A(h)),

the product space of probability measures over each of nature’s possible moves. Let’s denote by
Hi = T−1(i) the collection of information sets that belong to player i.

Definition 1.1 An extensive form game is a tuple Γ = (Z, (X, H,A), I, (u, T, µ)) such that

1. (X, H,A) is a decision structure for Z,

2. (u, T, µ) is an allocation of turns and tastes to I.

Without further ado, let’s consider a simple game and translate it into this formal framework.
2This is not X \ {Z}, which is the set of noninitial nodes.
3By condition 2, S(x) is empty if and only if x is a terminal node.
4Player N is nature.
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Example 1.2 Consider the following extensive-form game.
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The game in Example 1.2 is described as follows. The set of terminal nodes is

Z = {b1w2 , b1x2 , a1w2y1 , a1w2z1 , a1x2y1 , a1x2z1} .

The rooted tree X ⊂ 2Z is constructed so that each node is represented by the possible terminal
nodes from it. Hence,

X = {Z , {a1w2y1 , a1w2z1 , a1x2y1 , a1x2z1} , {b1w2 , b1x2} ,

{a1w2y1 , a1w2z1} , {a1x2y1 , a1x2z1}

{b1w2} , {b1x2} , {a1w2y1} , {a1w2z1} , {a1x2y1} , {a1x2z1}}.

Players 1 and 2 play this game. Since we can identify nodes on the game tree with partial paths
on the tree from the root, there is no loss in denoting the set X of nodes by

X = {ℵ , a1 , b1 , a1w2 , a1x2 , b1w2 , b1x2 , a1w2y1 , a1w2z1 , a1x2y1 , a1x2z1} ,

where ℵ stands for the root node. There are no chance nodes in this game. The information sets
belonging players 1 and 2 are

H1 = {ℵ, {a1w2 , a1x2}} ,

H2 = {{a1 , b1}} .

For each player i, an element of Hi is an information set for i. The action correspondence A is
given by the sets of partial paths below:5

A(ℵ) = {a1, b1} ,

A({a1 , b1}) = {w2 , x2} ,

A({a1w2 , a1x2}) = {y1 , z1} .

5Formally, w2 = {a1w2 , b1w2}, etc.
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1.2 Mixed and Behavior Strategies

There are two basic ways to think of strategic behavior in extensive form games. We will now define
a mixed strategy and a behavior strategy.

Definition 1.3 Fix a player i ∈ N . A mixed strategy for player i is any σi in

Σi := ∆

( ∏
hi∈Hi

A(hi)

)
. (Normal-form representation.)

A behavior strategy for player i is any πi in

Πi :=
∏

hi∈Hi

∆ (A(hi)) . (Multi-agent representation.)

The set of pure strategies is the product space

Ci :=
∏

hi∈Hi

A(hi),

where each ci ∈ Ci is to be interpreted as a complete contingent plan for player i.

I will also write Σ−i, Π−i, Σ, Π to mean the obvious objects. (The product spaces across all players
but i and across all players, respectively.) Let’s find C1 and C2 in the example.

C1 = {a1 , b1} × {y1 , z1} = {(a1, y1), (a1, z1), (b1, y1), (b1, z1)} ,

C2 = {w2, x2} .

A mixed strategy for player i is an element of ∆(Ci). Clearly, the mixed and behavior strategies
for Player 2 coincide. An example of a mixed strategy for Player 1 is 1

2 [(a1, y1)] + 1
2 [(b1, z1)].6 A

behavior strategy for player 1 is an element of

∆({a1 , b1})×∆({y1 , z1}).

An example of a behavior strategy is ( 1
2 [a1] + 1

2 [b1], 1
2 [y1] + 1

2 [z1]). This strategy is clearly very
different from the mixed strategy above. In the mixed strategy, Player 1 doesn’t mix at all between
y1 and z1.

Given a behavior strategy πi, its mixed-strategy representation is the mixed strategy σi given by

σi(ci) =
∏

hi∈Hi

πi(ci(hi)).

We construct the mixed-strategy representation by assuming that behavior strategies involve inde-
pendent mixing across information sets. For instance, the mixed-strategy representation of the be-
havior strategy ( 1

2 [a1]+ 1
2 [b1], 1

2 [y1]+ 1
2 [z1]) is given by 1

4 [(a1, y1)]+ 1
4 [(a1, z1)]+ 1

4 [(b1, y1)]+ 1
4 [(b1, z1)].

6For any choice x, the notation [x] stand for the lottery that yields x with unit probability.
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Given a mixed-strategy profile σ and a terminal node z ∈ Z, the probability of z being reached
under σ is denoted by P (z|σ). Given an information state hi, the probability of hi being reached
under σ is denoted by P (hi|σ).7 Given a behavior strategy πi, I will denote by σ̂i(·|πi) the mixed
representation of πi. I will also write, for a behavior-strategy profile π, P (x|π) to represent the
probability that x is reached under π. Clearly, P (x|π) = P (x|σ̂(·|π)). In Example 1.2, let σ be the
pure-strategy profile ((b1, y1), w2). It is easy to verify that P (z|σ) = 1 if z = b1w2 and 0 otherwise.
Similarly, P ({a1 , b1} |σ) = 1, but P ({a1w2 , a1x2} |σ) = 0.

Definition 1.4 For each information set hi ∈ Hi, and action ai ∈ A(hi), let

C∗
i (hi) = {ci ∈ Ci : ∃c−i s.t. P (hi|c) > 0} ,

C∗∗
i (hi, ai) = {ci ∈ C∗

i (hi) : ci(hi) = ai} .

For example, I compute the following sets.

C∗
1 = C∗

1 ({a1w2 , a1x2}) = {(a1, y1), (a1, z1)},

C∗∗
1 = C∗∗

1 ({a1w2 , a1x2} , y1) = {(a1, y1)}.

Given a mixed strategy σi, a behavior strategy πi is called a behavioral representation of σi if for
every hi ∈ Hi and every ai ∈ A(hi), the following equality holds:

πi(hi)(ai)

 ∑
ci∈C∗i (hi)

σi(ci)

 =
∑

ci∈C∗∗i (hi,ai)

σi(ci). (∗)

Clearly, if the summation on the left is zero then the summation on the right is zero, too. Notice
that if we read the terms of (∗) as

P (ai|hi) := πi(hi)(ai), P (hi|σi) :=
∑

ci∈C∗i (hi)

σi(ci), P (hi, ai|σi) :=
∑

ci∈C∗∗i (hi,ai)

σi(ci),

then (∗) is just Bayes’ rule: P (ai|hi)P (hi|σi) = P (hi, ai|σi). Hence, a behavioral representation of
σi is any behavior strategy πi that satisfies, given hi ∈ Hi and ai ∈ A(hi),

πi(hi)(ai) =

{
P (hi,ai|σi)

P (hi|σi)
if P (hi|σi) > 0,

anything otherwise,

with the proviso that “anything” must add up to one on every hi.8 For example, consider the
mixed strategies 1

2 [(a1, y1)] + 1
2 [(b1, z1)] and 1

2 [(a1, y1)] + 1
2 [(b1, y1)]. They both have the same

behavioral representation ( 1
2 [a1] + 1

2 [b1], [y1]), which in turn has the mixed-strategy representation
1
2 [(a1, y1)] + 1

2 [(b1, y1)].

7Without chance nodes, if c is a pure-strategy profile, then P (hi|c) is either 0 or 1.
8I.e., behavioral representations are only defined up to zero-probability events, like conditional expectation.
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Definition 1.5 Two mixed strategies σi, τi ∈ ∆(Ci) are called behaviorally equivalent if they have
the same behavioral representation whenever P (hi|σi)P (hi|τi) > 0. They are called payoff equivalent
if for every player j ∈ N and any profile of strategies by i’s opponents σ−i,

uj(σ−i, σi) = uj(σ−i, τi),

where uj is Player j’s utility function in the normal-form representation of the game.

To illustrate, consider the game in Example 1.6 below. This game doesn’t have perfect recall: player
1 forgets his move in the first node. Consider the mixed strategies σ1 = 1

2 [(x1, x3)] + 1
2 [(y1, y3)]

and τ1 = 1
2 [(x1, y3)] + 1

2 [(y1, x3)]. It is clear that they are behaviorally equivalent, with behavioral
representation ( 1

2 [x1] + 1
2 [y1], 1

2 [x3] + 1
2 [y3]). However, they’re not payoff equivalent. For instance,

given [x2], u1(σ1, [x2]) = 0 yet u1(τ1, [x2]) = −1.

Example 1.6 A game with imperfect recall.
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We will generally restrict ourselves to games with perfect recall, for the following reason.

Theorem 1.7 (Kuhn, 1953) In every game with perfect recall, any two mixed strategies that are
behaviorally equivalent are also payoff equivalent.

See Myerson’s book for a proof.

2 Equilibrium in Extensive Form Games

This section follows pretty closely Chapter 4 of Myerson’s book.
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2.1 Drawbacks in the Normal Form and Multi Agent Representations

In Section 1.2 we defined the normal-form (NFR) and multi-agent (MAR) representations of a
game. Restricted to Nash equilibrium, one is left with the dilemma of too many equilibria in the
NFR and unintuitive ones in the MAR. To illustrate, consider the game in Example 1.2.

w2 x2

a1y1 3, 2 2,3
a1z1 0,5 4, 1
b1y1 2,3 3, 2
b1z1 2,3 3, 2

In this NFR, there are no pure Nash equilibria. However, there are many mixed Nash equilibria. For
example,

(
1
2 [a1y1] + 1

2 (p[b1y1] + (1− p)[b1z1]), 1
2 [w2] + 1

2 [x2]
)

is a mixed NE if 0 ≤ p ≤ 1. Trivially,
there are too many (behaviorally equivalent) equilibria that lead to the same behavior strategy:
(( 1

2 [a1] + 1
2 [b1], [y1]), 1

2 [w2] + 1
2 [x2]). On the other hand, MAR leads to a slightly different problem

with Nash equilibrium. Working our way back from the end, let player 1 be the player choosing
between y1 and z1, player 2 be player 2, and player 3 be the player at the root node.

w2 x2 w2 x2

y1 3, 2,3 2,3,2 2,3, 2 2,3,2
z1 0,5, 0 4, 1,4 2, 3,3 2,3, 2

a1 b1

The profile (y1, x2, b1) is a pure NE. However, it seems to reflect a miscoordination between the
two player 1’s at different information sets. In this sense, the NE is unintuitive. This motivates the
following definition.

Definition 2.1 Let Γ be an extensive form game, with NFR ΓN and MAR ΓM . A behavior strategy
profile π is called an equilibrium of Γ if π is a Nash equilibrium of ΓM and the mixed representation
σ̂ of π is a Nash equilibrium of ΓN .

There is only one equilibrium in Example 1.2: (( 1
2 [a1] + 1

2 [b1], [y1]), 1
2 [w2] + 1

2 [x2]).

Proposition 2.2 In games Γ with perfect recall, if σ is a NE of ΓN then any behavior representation
π̂ of σ is a NE of ΓM .

Therefore, in games with perfect recall, an equilibrium always exists.9

9The perfect recall condition is necessary: in Example 1.6, ΓN has only one NE, ( 1
2
[x1x3]+ 1

2
[y1y3], 1

2
[x2]+ 1

2
[y2]).

However, there is no behavioral representation of this profile that makes it a NE of ΓM .
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2.2 Sequential Rationality

Informally, a behavior strategy profile π is sequentially rational for player i at history hi if πi(hi) ∈
∆(A(hi)) is optimal amongst all alternatives that only change πi(hi). Formally, we require that

πi(hi) ∈ arg max
di(hi)

{ui([πi : di(hi)], π−i|hi) : di(hi) ∈ ∆(A(hi))} ,

where [πi : di(hi)] is the strategy that only replaces πi(hi) with di(hi), and ([πi : di(hi)], π−i|hi) is
the profile of conditional probabilities (over terminal nodes) that result from applying Bayes’ rule
to ([πi : di(hi)], π−i) conditional on hi.

For now, we assume that hi has positive probability under π. The caveat of positive probability
constitutes a serious drawback. While in (statistical) decision theory zero-probability events are
usually unimportant and ignored, in game theory zero-probability events are crucially important.
We will address this issue shortly.

From the profile π, we may infer, for each terminal node z, the probability that z is reached under
π, P (z|π). For any nonterminal node history hi and nonterminal node x ∈ hi, since P (A ∪ B) =
P (A) + P (B) when A ∩B = ∅, it follows that

P (x|π) =
∑
z∈x

P (z|π), P (hi|π) =
∑
x∈hi

P (x|π).

Therefore, we may induce from π player i’s “beliefs” regarding the probability of being a node
x ∈ hi conditional on reaching hi:

Pπ(x|hi) :=
P (x|π)
P (hi|π)

.

Conversely, we may want to begin with players’ beliefs over nodes x ∈ hi given hi, and then ask
whether or not a strategy is sequentially rational given those beliefs. For any player i, a vector of
beliefs is a βi in ∏

hi∈Hi

∆(hi);

given a profile π, βi is called weakly consistent with π if given hi and x ∈ hi,

βi(x|hi)P (hi|π) = P (x|π).

Weak consistency has no bite off the equilibrium path.10 The profile π is sequentially rational for i

with beliefs βi(·|hi) ∈ ∆(A(hi)) at hi if βi is weakly consistent with π and

πi(hi) ∈ arg max
di(hi)

{∑
x∈hi

βi(x|hi)ui([πi : di(hi)], π−i|x) : di(hi) ∈ ∆(A(hi))

}
.

In games with perfect recall, equilibrium strategies are sequentially rational on the path of play.
10I.e., if P (hi|π) = 0 then P (x|π) = 0 and βi(hi) can be anything that adds up to one.
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Proposition 2.3 Let π be an equilibrium (in the sense of Definition 8) of a game with perfect
recall. For any player i and history hi, if P (hi|π) > 0 then π is sequentially rational for player i at
hi with beliefs Pπ(·|hi).

For instance, in Example 1.2, π = ((b1, y1), w2) is not sequentially rational for player 1 at the
root node. What beliefs would make π sequentially rational for player 1 at the information set
h1 = {a1w2 , a1x2}? If player 1 believed that the conditional probability of player 2 having played
w2 given h1 was p then

Eβ1(h1)[u1(y1)|h1] = 3p + 2(1− p),

Eβ1(h1)[u1(z1)|h1] = 4(1− p),

rendering y1 conditionally optimal if p ≥ 2
5 . It remains to check that such beliefs are weakly

consistent. But since P (a1|π) = 0 and any beliefs off the equilibrium path are weakly consistent, it
follows that π is sequentially rational for player 1 at h1 with beliefs p ≥ 2

5 .

Definition 2.4 A strategy profile π is sequentially rational with beliefs β if π is sequentially ra-
tional for every player i and every history hi with beliefs β(·|hi).

2.3 Consistent Beliefs and Conditional Expectation

The inability of conditional expectation to prescribe beliefs off the equilibrium path is a problem.
Consider the following related examples.

Example 2.5 Consistency of sequentially rational profiles.
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The game on the left differs from that on the right in that the turns for players 3 and 4 are switched.
In the left game, the profile π = ([`1], [`2], 1

2 [`3]+ 1
2 [r3], [`4]) is an equilibrium, yet there do not exist
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beliefs for player 3 that would make π sequentially rational for him given those beliefs.11 Indeed,
according to π, player 4 plays `4. Since sequential rationality only allows “deviations” by one player
at a time, player 3 strictly prefers to play `3 rather than π3 (since 2 > 1). Thus, π3 is not a best
response.

This suggests that sequential rationality as defined in Section 2.2 can usefully refine the equilibrium
notion of Definition 8, since π is an equilibrium that fails the test of sequential rationality. Alas,
by making the apparently innocuous change from the left tree to the right tree, it turns out that
not only is π an equilibrium of the right game, but it also passes the test of sequential rationality.

To see this, let x and y be the two nodes in player 3’s information set, h3, and let his beliefs be
given by β3(x|h3) = β3(y|h3) = 1

2 . Since h3 is reached with probability zero under π (player 1 plays
`1), it is immediate that β3(·|h3) is weakly consistent with π. But given such beliefs, player 3 is
indifferent between `3 and r3 (each leads to an expected payoff of 1 miserable util). Therefore, it
is a best response at h3 to randomize between `3 and r3. If player 3 plays 1

2 [`1] + 1
2 [r1] then player

4 optimally plays `4, etc. The problem with this equilibrium is that it seems hard to justify player
3’s beliefs when player 4 is playing the pure strategy `4.

Kreps and Wilson (1982) developed a stronger notion of consistency that eliminates both equilibria.
Let Π◦ be the set of strategy profiles that assign positive probability to every node. For any such
π◦ every history has positive probability, so is on the equilibrium path. Say that β◦ is consistent
with π◦ if β◦ is weakly consistent with π◦.12

The set of all consistent pairs (π◦, β◦) with π◦ ∈ Π◦ is denoted by C◦. To generally define beliefs
β that are consistent with π even if some histories occur with zero probability under π, we will
approximate π by a sequence of pairs (π◦n, β◦n) ∈ C◦. Formally, for any profile π, a beliefs vector β

is called consistent with π if there is a sequence (π◦n, β◦n) ∈ C◦ such that

πi(hi)(ai) = lim
n→∞

π◦i,n(hi)(ai), ∀i, hi, ai;

βi(x|hi) = lim
n→∞

β◦i,n(x|hi), ∀i, hi, x ∈ hi.

Since β◦ is consistent with π◦, β◦i,n(x|hi) = P (x|π◦n)/P (hi|π◦n) ≤ 1 for each n, so βi(x|hi) ≤ 1. Let
C be the set of all such consistent pairs. (Clearly, C ⊃ C◦.) We are now ready to define a sequential
equilibrium. Let π be any strategy profile and β any beliefs vector.

Definition 2.6 The assessment (π, β) is called a sequential equilibrium if

1. π is sequentially rational with β,

2. β is consistent with π.

Let’s try some examples now.
11By Proposition 10, it follows that P (h3|π) = 0.
12Of course, since every node has positive probability under π◦, β◦ is uniquely determined by Bayes’ rule in the

condition for weak consistency.
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2.4 Examples of Sequential Equilibria

For either game in Example 2.5, the unique sequential equilibrium is π = ([`1], [`2], 1
2 [`3]+ 1

2 [r3], 1
2 [`4]+

1
2 [r4]) together with beliefs β4 = ( 1

2 , 1
2 ) in the left game and β3 = ( 1

2 , 1
2 ) in the right game. The

remaining players’ beliefs are trivial since everyone else’s information sets are singletons.

Example 2.7 Another example of sequential equilibrium.
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Notice that π = (a1, a2, a3) is an equilibrium of this game. Let’s find out whether or not there are
beliefs β that turn (π, β) into a sequential equilibrium. Consider the following completely mixed
perturbation πε of π.

πε = ((1− ε0 − ε1)[a1] + ε0[b1] + ε1[c1], (1− ε2)[a2] + ε2[b2], (1− ε3)[a3] + ε3[b3]).

As ε → 0, i.e., as εi → 0 for every i, it is clear that πε → π. Applying Bayes’ rule yields the
following consistent beliefs: β1(ℵ|ℵ) = 1 by a trivial application. Since mixing is independent and
the only thing that could ever be learnt by Bayes’ rule is that a1 wasn’t played,

βε
2(b1|h2) =

ε0
ε0 + ε1

= 1− βε
2(c1|h2),

βε
3(b1a2|h3) = (1− ε2)βε

2(b1|h2),

βε
3(c1a2|h3) = (1− ε2)βε

2(c1|h2),

βε
3(b1b2|h3) = ε2β

ε
2(b1|h2),

βε
3(c1b2|h3) = ε2β

ε
2(c1|h2).

As ε → 0, beliefs converge to

β2(b1|h2) = p = 1− β2(c1|h2),

β3(b1a2|h3) = p = 1− β3(c1a2|h3),

β3(b1b2|h3) = 0 = β3(c1b2|h3),
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where p = lim ε0/(ε0 + ε1) could be any number between 0 and 1, depending on the rate of conver-
gence of ε. For these beliefs to be consistent, it must be the case that

β3(b1a2|h3) + β3(b1b2|h3) = β2(b1|h2),

β3(b1a2|h3) + β3(c1a2|h3) = π2(a2);

both conditions are satisfied. Therefore β is consistent with π for any p. However, π is not
sequentially rational with β. Indeed, if player 3 plays a3 then with these beliefs player 2 would get
an expected utility of 3(1 − p) if he played b2 and 1 if he played a2. Hence p ≥ 2/3 is necessary
for sequential rationality. Likewise, player 3’s expected utility from playing a3 is 1 whereas the
expected utility from playing b3 is 3p. Therefore, sequential rationality requires that p ≤ 1/3, a
contradiction.

It follows that (a1, a2, a3) cannot be supported by beliefs that make it a sequential equilibrium.
However, the profile (c1, b2, b3) can be supported in sequential equilibrium (with the obvious beliefs).

Example 2.8 The beer-quiche game.

bN
0.9

0.1r
1w

q1w b1w

r1sq1s b1s

pppp
pppp
pppp
ppp

2

pppp
pppp
pppp
ppp

2

rPPP
���

u2q

d2q

r2, 1 r0, 0

rPPP
���

u2q

d2q

r3, 1 r1, 2

r���
PPP

u2b

d2b

r 3, 1r 1, 0

r���
PPP

u2b

d2b

r 2, 1r 0, 2

Let’s show that the profile π = ((b1s, b1w), (d2q, u2b)) is a sequential equilibrium with some consistent
beliefs. On the path of play, player 2 must have beliefs consistent with Bayes’ rule. Therefore,
β2(1s|b1) = .9, i.e., since both types of player 1 adopt the same strategy, player 2 doesn’t learn from
observing b1. Therefore u2b is sequentially rational for player 2, since player 2’s expected payoff
from playing u2b is 1, which exceeds the payoff from playing d2b (2(0.1) = .2 utils).

Suppose that player 2’s beliefs about player 1’s type conditional on observing quiche are given by
β2(q1s|q1) = p and β2(q1w|q1) = 1− p. The action d2q is sequentially rational given these beliefs if
2(1 − p) ≥ 1. In words, given that player 2 observes that player 1 played q1, playing d2 will be a
best response only when player 2 assigns sufficiently high probability to the event that player 1’s
type is 1w. But if player 2 optimally plays d2q then players 1s and 1w will have no incentive to
deviate from b1. Hence π is sequentially rational with these beliefs. Furthermore, such beliefs are
consistent with π. Let πε

1 = ((1 − εs)[b1s] + εs[q1s], (1 − εw)[b1w] + εs[q1w]), with ε = (εs, εw) → 0.
The beliefs βε

1(q1s|q1) = .9εs/(.9εs + .1εw) are consistent with πε, and by picking the ratio εs/εw

appropriately we can make them converge to any p in [0, 1]. We’re done.
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3 Self Confirming Equilibrium

First I will define the flora and fauna of self confirming equilibrium concepts and comment a little
bit on them and then I’ll introduce some examples.

3.1 Equilibrium Beliefs about Opponents’ Play

Self-confirming equilibrium (SCE) is motivated by the idea that Nash equilibrium assumes players
know their opponents’ strategies. The object of SCE is to relax that assumption. To begin with,
players are assumed to only know the structure of the extensive form, the distribution of nature’s
moves, and their own payoffs. The additional requirement for SCE is that players’ beliefs about
their opponents’ play be correct on the equilibrium path, but not necessarily off the path. The
space of players’ beliefs is defined in terms of behavior strategy profiles. For any player i, i’s beliefs
about his opponents’ play is any probability measure µi in

Ωi := ∆ (Π−i) .

Player i’s beliefs µi reflect his uncertainty about opponents’ play and therefore induce probabilistic
beliefs on terminal nodes. If i plays the pure strategy ci then his subjective probability that the
terminal node z will be reached is simply the expected value of the conditional probability of
reaching z given (ci, π−i), thus:

Pi(z|ci, µi) = Eµi
[P (z|ci, π̃−i)] =

∫
Π−i

P (z|ci, π−i)dµi(π−i).

Although behavior strategy profiles assume independent mixing between opponents and information
sets, beliefs may be correlated. To illustrate, suppose that there are three players, and that players
2 and 3 simultaneously choose between the strategies U and D. Let

µ1(π−1) =

{
1
4 if π2(U) = π3(U) = 1,
3
4 if π2(U) = π3(U) = 1

2 .

In this case, P1(U,U) = 1
41 + 3

4 ·
1
4 = 7/16, P1(U,D) = P1(D,U) = P1(D,D) = 3/16.

Player i’s utility function is defined over terminal nodes. We define the induced expected utility
over belief-action pairs (ci, µi) as

ui(ci, µi) =
∑
z∈Z

ui(z)Pi(z|ci, µi).

Given a mixed strategy σj ∈ Σj , let me denote by π̂j(·|σj) its behavioral representation. The event

Ei(hj) := {π−i : πj(hj) = π̂j(hj |σj)}

is the set of behavior strategy profiles for i’s opponents that are consistent with player j playing
according to σj at information state hj . Notice that i and j are fixed. Therefore, Ei(hj) contains
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all behavior profiles π−i whose jth entry πj coincides with π̂j(hj |σj) at history hj . The strategy πj

could be anything outside hj , as could the strategies of all other players.

We are now ready to define a Nash equilibrium and a SCE.

Definition 3.1 A profile σ is a Nash equilibrium if for any i ∈ I and ci ∈ Ci with σi(ci) > 0 there
exists µi ∈ Ωi such that

1. ci ∈ arg max ui(·, µi),

2. µi(Ei(hj)) = 1 for every hj and every j 6= i.

The first condition requires that ci be an optimum strategy given beliefs µi, and the second condition
requires that every player’s beliefs are correct regarding every behavior strategy of every opponent
in the sense that µi(Ei(hj)) = 1, i.e., that the subjective probability for player i that player j is
playing π̂j(hj |σj) at hj is one for every hj and every j.

Definition 3.2 A profile σ is a self-confirming equilibrium if for any i ∈ I and ci ∈ Ci with
σi(ci) > 0 there exists µi ∈ Ωi such that

1. ci ∈ arg max ui(·, µi),

2. µi(Ei(hj)) = 1 for every hj such that P (hj |σ) > 0 and every j 6= i.

The only difference between Nash equilibrium and SCE is that Nash equilibrium requires beliefs
to be correct everywhere, whereas SCE only requires beliefs to be correct on information sets that
have positive probability under σ, allowing for wrong beliefs about opponents’ behavior strategies
off the equilibrium path (i.e., on information sets h with P (h|σ) = 0).

Notice that in both definitions, potentially different µi’s are allowed to justify different ci’s. In
the definition of NE, this flexibility is vacuous, since beliefs—always having to be correct—must
be unique (two different beliefs cannot both be correct). The flexibility matters once beliefs are
allowed to be wrong. This suggests the following refinement, which requires that for every player
i, if two strategies ci and c′i have positive probability of being played, then there must exist some
beliefs that make both ci and c′i best responses simultaneously.

Definition 3.3 A profile σ is a unitary self-confirming equilibrium (USCE) if given i ∈ I there
exists µi ∈ Ωi such that for any ci ∈ Ci with σi(ci) > 0

1. ci ∈ arg max ui(·, µi),

2. µi(Ei(hj)) = 1 for every hj such that P (hj |σ) > 0 and every j 6= i.
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Fudenberg and Levine (1993b) formalize the motivation of Nash equilibrium as the steady state
of a learning process. They construct a dynamic environment where players repeatedly play an
extensive-form game and, by playing, they learn about their opponents’ strategies through Bayesian-
updating. Intuitively, every player i considers trying different strategies to observe the play of his
opponents, thus learning about his opponents’ strategy profile, which is potentially beneficial to him.
On the other hand i incurs an opportunity cost from experimenting by trying different strategies
because some may lead to perhaps suboptimal strategies being played, depending on the actual
profile of i’s opponents’ strategies.

Players have a common discount factor, δ. Formally, Fudenberg and Levine show that as δ → 1,
the path of play that will arise in a steady state of the learning process is characterized by the set
of Nash-equilibrium outcomes. Moreover, if δ < 1, then players will generally play a self confirming
equilibrium. The intuition behind this result is that as δ → 1, the opportunity cost of (optimum)
experimentation tends to zero, implying that the benefits of learning exceed the zero cost, whence
players will experiment until they know with probability 1 the strategy profile of their opponents.
However, when δ < 1, such opportunity cost is strictly positive, therefore it may be optimal to
forego learning about opponents’ strategies to some extent. Of course, on the equilibrium path,
play by opponents is necessarily observed, so beliefs ought to be correct there.

So far, it may be argued, this intuitive story only captures the notion of unitary self confirming
equilibrium. True enough. Fudenberg and Levine consider games with player roles. In such games,
there is a large population of players who are randomly matched from |I| many pools and whose
roles i ∈ I are allocated according to a player’s pool once matched. Furthermore, there are many
different kinds of player types in the population. (Some will be commitment types.) In this larger
game, a player from pool i will play the game with opponents that are not necessarily the same
players from period to period.

In the long run, a player from pool i will have played with all sorts of types of opponents. In
particular, he will have observed the behavior of all sorts of commitment types. If the size of the
population of commitment types is small relative to the “rational” types, a player may use the law
of large numbers to distinguish between the play of commitment types and the play of rational
types. Furthermore, a player in pool i will be able to discern the play of his “rational” opponents
on all the information sets that could be reached by some profile of commitment and “rational”
types of opponents when the player in pool i is playing some strategy ci. Intuitively, a player
“observes” the experimentation of his opponents (reflected in different types of opponents) but not
of other types of players in the same pool. The concept of consistent self-confirming equilibrium
naturally characterizes the equilibria that are consistent with this story. For any player i ∈ I and
pure strategy ci, let

H(ci) = {h ∈ H : ∃c−i ∈ C−i s.t. P (h|c) > 0} .

The set H(ci) consists of those information sets where player i may be restricted to have correct
beliefs about opponents’ play if he gets to observe the experimentation of opponents. It is the
histories that are reachable by some strategy profile of i’s opponents, c−i, when i plays ci.
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Definition 3.4 A profile σ is a consistent self-confirming equilibrium (CSCE) if for any i ∈ I and
ci ∈ Ci with σi(ci) > 0 there exists µi ∈ Ωi such that

1. ci ∈ arg max ui(·, µi),

2. µi(Ei(hj)) = 1 for every hj ∈ H(ci) and every j 6= i.

It’s about time to frame these ideas in specific games.

3.2 Examples of Self Confirming Equilibria

Here I present some examples to illustrate the different equilibrium concepts. The first example is
perhaps the most important, originally presented by Fudenberg and Kreps (1988). This example
shows that an SCE need not be Nash.

Example 3.5 In the game below, (a1, a2) is a self-confirming equilibrium outcome.

b1
d1

a1 r2
d2

a2

r

r 1, 1, 1

p p p p p p p p p p3r
�

��
@

@@

` rr
3, 0, 0

r
0, 3, 0

r
�

�
�

��

A
A
A
AA

` r

r
3, 0, 0

r
0, 3, 0

To show that (a1, a2) is the outcome of a SCE, suppose that player 1 believes that player 2 will
play a2 and player 3 will play r with probability 1. Then, player 1’s best strategy is to play a1. If
player 2 believes that player 3 will play ` with probability 1, then player 2’s best strategy will be
to play a2. Whatever player 3’s strategy may actually be, he never gets to play it if players 1 and 2
play (a1, a2), whence the beliefs of players 1 and 2 about player 3’s strategy never get disconfirmed.
Since player 1’s beliefs about player 2’s strategy are correct, we arrive at a SCE.

However, this is not a Nash equilibrium, because players 1 and 2 have different beliefs about player
3’s strategy and NE assumes that players have the same correct beliefs about everyone’s strategy.
Furthermore, there is no Nash equilibrium of this game that supports (a1, a2) as an outcome, for if
players 1 and 2 both believed that player 3 would play ` with some probability p, then at least one
of them would optimally play di.13

13If p ≤ 2
3

then player 2 would optimally play d2, and if p ≥ 1
3

then player 1 would optimally play d1.
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Since players only have one information set each, this SCE is automatically unitary. Finally, notice
that this is SCE is not consistent. To see this, notice that

H(a1) = H(a2) = {h1, h2, h3} ,

where hi is player i’s only information set. Therefore, here the consistency refinement requires that
both players 1 and 2 have correct beliefs about player 3’s play. By the previous argument, (a1, a2)
must therefore be suboptimal for at least one player.

One way to think about why this is happening is to notice that the game fails to have observed
deviators. For any mixed-strategy profile σ, let

H(σ) = {h ∈ H : P (h|σ) > 0}

be the family of information sets that are reached with positive probability when players play σ.

Definition 3.6 A game has observed deviators if given a strategy profile c, any player i and possible
deviation di 6= ci, h ∈ H(di, c−i) \H(c) implies that there is no d−i such that h ∈ H(ci, d−i).

This simply says that any history that may occur if i deviates from ci to di cannot arise from player
i playing ci and some other player deviating. I.e., if player i deviates then somebody will find out
that indeed it was player i who deviated. Games of perfect information and repeated games with
observed actions have observed deviators. Also, two-player games with perfect recall satisfy this
property, too. Fudenberg and Levine (1993a) prove the following classification of SCE in games
with observed deviators.

Theorem 3.7 In games with observed deviators, every self-confirming equilibrium is consistent.

It follows that every SCE is a CSCE in two-player games with perfect recall.

Example 3.8 The convexifying effect of self-confirming equilibria that are not unitary.

b1
d1

r1

r
2, 2

rr2
d2

r2

r
3, 1

r 1, 0

In the game above, there are two Nash equilibrium outcomes: d1 and (r1, r2). The mixed profile
( 1
2 [d1] + 1

2 [r1], r2) is a SCE. However, it isn’t unitary. Suppose that player 1 plays d1 when he
believes that player 2 will play d2 with probability 1, and that player 1 plays r1 when he believes
that player 2 will play r2 with probability 1. Then, when player 1 plays d1, his beliefs about player
2’s play are not disconfirmed. The mixed strategy by player 1 is somehow related more to random
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beliefs than to random behavior. It’s as if a coin is flipped and if heads, player 1 will play d1 because
he believes that player 2 will play d2, and if tails, player 1 will play r1 because he believes that
player 2 will play r2.

Finally, it is easy to verify that the outcomes from non-unitary self confirming equilibria convexify
the set of Nash equilibrium outcomes.

The last example reflects the possibility that correlated beliefs about opponents’ play may lead to
SCE that are not Nash outcomes.

Example 3.9 Consider the following game with three players. Player 1 has the first move. He
may choose one of four actions: A,L1,M1, R1. If player 1 plays A, then the game ends and payoffs
are (1, 0, 0). If player 1 plays L1, M1, or R1, then players 2 and 3 play the corresponding game:

L3 R3 L3 R3 L3 R3

U2 4, 1,−1 0,−1, 1 −4, 1,−1 0,−1, 1 0, 1,−1 3,−1, 1
D2 0,−1, 1 −4, 1,−1 0,−1, 1 4, 1,−1 3,−1, 1 0, 1,−1

L1 M1 R1

However, neither player 2 nor player 3 observes player 1’s action.

In this example, the strategy A is a best response by player 1 to the correlated beliefs P1(U2, L3) =
P1(D2, R3) = 1

2 , since for each possible strategy in {L1,M1, R1}, its expected payoff to player 1
given these beliefs is zero, and the payoff from A is 1 util. However, A is never a best response to
any strategy profile of players 2 and 3. For proof, suppose that player 2 plays U2 with probability
p2 and that player 3 plays L3 with probability p3. In order for A to be a best response for player
1, it must be the case that

L1 : 4p2p3 − 4(1− p2)(1− p3) ≤ 1 ⇒ p2 + p3 ≤ 5/4,

M1 : −4p2p3 + 4(1− p2)(1− p3) ≤ 1 ⇒ p2 + p3 ≥ 3/4,

R1 : 3p2(1− p3) + 3(1− p2)p3 ≤ 1.

If p2 ≤ 1
2 then the lowest that p3 could be whilst satisfying (R1) is p3 = 3

4 − p2. Substituting this
into (R1) leads to the quadratic 2p2

2− 3
2p2+ 3

4 , which is minimized with respect to p2 when p2 = 3/8.
The implied value of p3 is 3/8, too. But when p2 = p3 = 3/8, it is easy to check that the left-hand
side of (R1) is 30/64 > 1/3, implying that (R1) is violated. The proof if p2 > 1

2 is the same.

Let me underline that player 1 need not believe that players 2 and 3 correlate their play (indeed
player 1 does not), it is precisely that player 1’s beliefs are correlated.
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