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Problem Set 1: Problems on Static Games

Exercise 1: Dominance and Equilibrium

For each of the following games find:

1) all weak and strict dominant strategy equilibria (WDS/ SDS)

2) apply iterated strict dominance (ISD)

3) find all pure and mixed Nash equilibria (PSNE, MSNE)

4) indicate which NE are trembling hand perfect (THP) and why.

a) Consider the following game:

P2

L R

P1
U 2,1 0,0

D 0,0 1,2

1) We first look at the best responses of each player.

BR1(L) = U BR1(R) = D

BR2(U) = L BR2(D) = R

No player has a weakly or strictly dominant strategy. Hence, there is no pure strategy

equilibrium in strictly or weakly dominant strategies. There is no mixed strategy equi-

librium in weakly or strictly dominant strategies either. To see this, take any convex

combination of U-D for P2: it will pay less than just playing U. The same applies to P1.

∗This version builds on the solutions provided by Damiano Argan and Konuray Mutluer.
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2) It is not possible to apply ISD since players have no dominant strategies.

3) PSNE: Based on the BRs, there are two

PSNE = {(U,L), (D,R)}

MSNE: Call σL the probability that P2 always plays L (and equivalently σR = 1 − σL
for R). P2 will set his probability to make P1 indifferent between playing his strategies.

2σL = 1− σL σL = 1/3 σR = 2/3

By symmetry, we know σU = 2/3 and σD = 1/3.

Always remember to include the PSNE of the game when writing the MSNE.

MSNE =

{(
2

3
U +

1

3
D,

1

3
L+

2

3
R

)
,
(

1U + 0D, 1L+ 0R
)
,
(

0U + 1D, 0L+ 1R
)}

MSNE =
{(
σU = 2/3, σL = 1/3

)
,
(
σU = 1, σL = 1

)
,
(
σU = 0, σL = 0

)}
4) All the equilibria are trembling hand perfect.

Proposition. Trembling hand perfect (THP)

The strategy σ = (σ1, . . . , σN ) is THP in a two player game if it does not attach any

probability to weakly dominated strategies.

In our PSNE, any deviation yields strictly lower payoffs.

Proof. Consider the PSNE {U,L} and add a slight tremble εn = 1/3n (now it is a fully

mixed sequence!).

σn = {σnU , σnL} =

{(
1− 1

3n

)
,

(
1− 1

3n

)}
The sequence converges to the PSNE {U,L} as n→∞. In this case, the BR are: 1

BR1(σnL) = U

BR2(σnU ) = L

}
∀n

The MSNE contains a fully mixed strategy, since both PSNE are played with strictly

positive probability. So we can take the fully mixed sequence sequence σn = σMSNE∀n.

This (constant) sequence trivially converges to σMSNE , yielding the same BR.

b) Consider the game:

1) D is a SDS for P1 as BR1(L) = BR1(R) = D.

R is a SDS for P2 as BR2(U) = BR2(D) = R.

The strategy σD = {(D,R)} constitutes a strictly dominant strategy equilibrium.

1u(U, σn
L) = 2− 2

3n
>

1

3n
= u(D,σn

L)
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P2

L R

P1
U 6,6 0,7

D 7,0 1,1

2) There is only one strategy profile surviving ISD. This game is called dominance solvable,

and any dominance solvable game has a unique NE.

Start with P1: U is strictly dominated by D, hence we remove it. As for P2, L is strictly

dominated by R for P2, hence we remove it.

3) Therefore, the unique (pure and mixed) NE is {(D,R)}. There is no totally MSNE as

no strictly dominated strategy is played with positive probability in a NE.

4) Any deviation from this unique equilibrium yields strictly lower payoffs. 2 Hence, this

is a strict NE and in any two player game a strict NE is THP.

c) Consider the game:

P2

P1

L C R

U 3,3 2,2 1,1

M 2,2 1,1 0,8

D 1,1 8,0 0,0

1) We first look at the best responses of each player.

BR1(L) = U BR1(C) = D

BR2(U) = L BR2(M) = R

There are no strict nor weak dominant strategies for P1 nor P2.

2) We start with P1: M is strictly dominated by U, we remove it. Move to P2: C is strictly

dominated by L, remove it. Then R is strictly dominated by L, so remove it. Back to

P1, D is strictly dominated by U, remove it.

The iterated removal of strict dominant strategy leads to {(U,L)} as the unique ISD

profile.

3) The game is dominance solvable. The only NE of the game is {(U,L)}. There is no

pure MSNE because in a NE no strictly dominated strategies are played with positive

probability.

4) Since the strategy profile in the NE does not involve a weakly dominated strategy, it is

THP.

d) Consider the game:

2Alternatively, no weakly dominated strategy is involved.
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P2

P1

L R

U 1,3 1,3

D 0,0 2,0

1) We first look at the BRs of each player:

BR1(L) = U BR1(R) = D

BR2(U) = {L,R} BR2(D) = {L,R}

No strategy is strictly nor weakly dominant for P1.

Note that u2(σ1, L) = u2(σ1, R) ∀σ1 ∈ ∆{U,D}. P2 is indifferent between all of her

strategies given σ1. Remember that for a strategy to be weakly dominant it must

performs as good as the others for whatever strategy the other player could play and

better for at least one strategy. This last part is not satisfied in this example, hence

there are no strictly nor weakly dominant strategies for P2.

As neither player has a strictly dominant strategy, the game does not yield any dominant

strategy equilibria.

2) Iterated elimination is not possible, as there are no strictly dominant strategies.

3) Remark that P2 is always completely indifferent between L,R (they deliver the same

payoffs), so assigning any probability to them will be a a BR.

BR2(σ1) = ∆{L,R}

P1, however, is not always indifferent between P2’s strategies. Let’s look at the indiffer-

ence condition for P1.

1σL + 1(1− σL) = 0σL + 2(1− σL)→ σL =
1

2

BR1(σ2) =


D if σL < 1/2

∆{U,D} if σL = 1/2

U if σL > 1/2

Graphically, the BR are:
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MSNE =

{(
σU = 0, σL <

1

2

)
;

(
0 ≤ σU ≤ 1, σL =

1

2

)
;

(
σU = 1, σL >

1

2

)}
PSNE = {(σU = 1, σL = 1) , (σU = 0, σL = 0)}

4) No weakly dominant strategy is involved in any of the equilibria: all equilibria are THP.

Let’s look closer at the subsets of MSNE. We will perturb the strategies by adding an

error εn in each strategy profile. This error will depend on the equilibrium strategy:

• Consider σ? = (σ?U = 1, σ?L > 1/2).

We can convert it into the fully mixed sequence σn = (σnU , σ
n
L) = {1− εn, σ?L − εn}.

Let’s give a closer look at how we choose εn. We need that limn→∞ σ
n = σ?, and

for this it must be that limn→∞ εn = 0. These two conditions give us bounds for

the values of the “tremble”: εn ∈ (0, σ?L − 1/2)∀n. A candidate would be:

εn =
σ?L − 1/2

2n

σn = (σnU , σ
n
L) = {1− εn, σ?L − εn} =

{
1−

σ?L − 1/2

2n
, σ?L −

σ?L − 1/2

2n

}
Since σnL ≥ 1/2∀n, U is always a BR for P1 to σnL. 3 Any strategy is a BR for P2.

Hence, these equilibria are THP.

• Consider σ? = (σ?U = 1, σ?L = 1/2).

We can convert it into the fully mixed sequence σn = (σnU , σ
n
L) = {1 − εn, σL}.

Again, we need that limn→∞ σ
n = σ?, and for this it must be that limn→∞ εn = 0.

These two conditions give us bounds for the values of the “tremble”: εn ∈ (0, 1/2).

Choose, for example, εn = 1/3n. Since σnL = 1/2∀n, U is always a BR for P1 to

σnL (and any strategy is a BR for P2 to any strategy played by P1). Hence, these

equilibria are THP.

• Consider σ? = (σ?U = 0, σ?L = 1/2), and modify is so that σn = {σnU , σnL} = {εn, σ?L}.
Once again, we need that limn→∞ σ

n = σ?, and for this it must be that limn→∞ εn =

0. These two conditions give us bounds for the values of the “tremble”: εn ∈ (0, 1/2).

Choose, for example, εn = 1/3n. Since σnL = 1/2∀n, D is always a BR for P1 to

σnL (and any strategy is a BR for P2 to any strategy played by P1). Hence, these

equilibria are THP.

• Consider σ? = (σ?U = 0, σ?L < 1/2), and modify is so that σn = {σnU , σnL} = {εn, σ?L+

εn}. Once more, we need that limn→∞ σ
n = σ?, and for this it must be that

limn→∞ εn = 0. These two conditions give us bounds for the values of the “tremble”:

εn ∈ (0, σ?L)∀n. Choose, for example, εn =
1/2− σ?L

2n
. Since σnL ≤ 1/2∀n, D is

always a BR for P1 to σnL. Any strategy is a BR for P2. These equilibria are THP,

as σn → σ?.

• Consider σ? = (0 < σ?U < 1, σ?L = 1/2). These equilibria are fully mixed, which

means that they are assigning a strictly positive probability to every strategy in the

game. This is exactly the definition of THP, so they are automatically THP.
3If you are not convinced yet, check that u(U, σn

L) > u(D,σn
L)∀n
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Exercise 2: Dominance and Nash Equilibrium

Prove that a profile σ? = (σ1, . . . σI) is a Nash equilibrium of a game Γ if and only if it is the Nash

equilibrium of the game in which strategies have been removed by iterated strict dominance ΓN .

Some notation: we are calling Γ the collection of strategies at the original game, ΓN the collection

of strategies of the reduced form, and Γni the collection of strategies available for player i at iteration

n ∈ N.

WTS: σ? NE in Γ ←→ σ? NE in ΓN . We proceed to show each implication in turns.

σ? NE in Γ −→ σ? NE in ΓN

Two-step proof. For this implication, we need to show two things:

1. σ? is a NE in Γ then σ? ∈ ΓN , ie, a NE profile cannot be eliminated by IESDS.

Proof by contradiction.

Suppose σ? /∈ ΓN . If this is the case, some strategy σ?i from σ? has to be eliminated at an

iteration of the game Γn with n < N . Call σ′i the strategy that strictly dominates σ?i . The

definition of strict dominance implies that:

u
(
σ′i, σ

?
−i
)
> u

(
σ?i , σ

?
−i
)

This would constitute a profitable deviation from σ?i , which contradicts σ? being a NE of the

initial game.

2. σ? is a NE in Γ and σ? ∈ ΓN → σ? is a NE in ΓN .

Direct proof.

Since ΓN ⊆ Γ, and there are no profitable deviations from σ? in Γ, there cannot be any

profitable deviations in any subset of Γ.

σ? NE in ΓN −→ σ? NE in Γ

Proof by contradiction. Suppose σ? is a NE of ΓN but not of Γ. Thus, there exists σ′i ∈ Γi and

σ′i /∈ ΓN that constitutes a profitable deviation:

u
(
σ′i, σ

?
−i
)
> u

(
σ?i , σ

?
−i
)

But since σ′i /∈ ΓN , at some point it must be dominated by a strategy σ′′i ∈ Γni with n < N . As

the strategies of opponents survive ISD, σ?−i ∈ ΓN−i means σ?−i ∈ Γn−i, the strategy σ′′i at stage n

implies:

u
(
σ′′i , σ

?
−i
)
> u

(
σ′i, σ

?
−i
)
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Unless σ′′i ∈ ΓNi , the same will apply to σ′′i with other strategies until we reach the N th iteration

σ̃i ∈ ΓN . Players have a finite number of strategies, so we only need to repeat this argument N −n
times.

u
(
σ̃i, σ

?
−i
)
> u

(
σ′′i , σ

?
−i
)

Since σ? is a NE of ΓN , it must be weakly better off for i than any other strategy in ΓNi :

u
(
σ?i , σ

?
−i
)
≥ u

(
σ̃i, σ

?
−i
)
> u

(
σ′′i , σ

?
−i
)
> u

(
σ′i, σ

?
−i
)
> u

(
σ?i , σ

?
−i
)

which cannot be (a contradiction). A strictly dominated strategy will never be a NE.

Prove that a Nash equilibrium of a game in which strategies have been removed by iterated weak

dominance is a Nash equilibrium of the original game.

WTS: σ? is a NE in ΓNW −→ σ? is a NE in Γ

Proof by (sequential) induction. We will work with a sequence of games, starting with the reduced

game where all weakly dominated strategies have been eliminated, and will assign names to the

games that result from introducing one (and only one) weakly dominated strategy for each player

at a time.

• Γk is the game at iteration k. I also refer to Γki as the set of strategies available for player i

at game Γk.

• σki is a weakly dominated strategy for player i, the elimination of which produces the game

Γk.

• Γk+1 is the game resulting from the introduction of σki in Γk. The full game with all the

strategies is ΓK .

Using this notation, we can also say that Γk is Γk+1 without σki .

Inductive step:

Let me first prove that, if σ? is a NE at Γk, then it is a NE at Γk+1 ∀k. 4

Inductive hypothesis: Consider the game Γk, and suppose that this game has a Nash equilibrium

σ?. By definition:

u(σ?i , σ
?
−i) ≥ u(σ′i, σ

?
−i) ∀σ′i ∈ Γki

4The induction principle consists of:

1. A base case: A(1) is true

2. An inductive step: for all n ∈ N, the following implication is true: if A(n) is true (inductive hypothesis), then

A(n+ 1) is also true (inductive claim).

Then A(n) is true for all n ∈ N.
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Let’s add a weakly dominated strategy σki to Γk, so that we find ourselves in the game Γk+1. The

inductive claim we need to check is that, by moving from Γk to Γk+1, σ? remains a NE.

As σki is a weakly dominated strategy, we know that, for some σ′i ∈ Γk+1
i :

u(σki , σ−i) ≤ u(σ′i, σ−i) ∀σ−i ∈ Γk+1
−i

In particular, we can say that:

u(σki , σ
?
−i) ≤ u(σ′i, σ

?
−i)

for some σ′i ∈ Γk+1
i . Note that these σ′i ∈ Γk+1

i are actually the strategies present in Γk. Hence, we

have:

u(σki , σ
?
−i) ≤ u(σ′i, σ

?
−i) ≤ u(σ?i , σ

?
−i)︸ ︷︷ ︸

From σ? NE in Γk

And we can now claim that, in game Γk+1, we have:

u(σ?i , σ
?
−i) ≥ u(σ′i, σ

?
−i) ∀σ′i ∈ Γk+1

i

By moving from game Γk to game Γk+1 the strategy profile σ? remains a NE.

σ? is a NE in Γk −→ σ? is a NE in Γk+1 ∀k (1)

Base case:

Let’s now turn to Γ1, the final game without any weakly dominated strategies. The statement tells

us that there exists a NE in Γ1, so that:

u(σ?i , σ
?
−i) ≥ u(σ′i, σ

?
−i) ∀σ′i ∈ Γ1

i

Therefore, we can apply (1) and claim that the game Γ2, resulting from adding a weakly dominated

strategy will also have σ? as a NE. We can iterate this result as many times as needed (finitely many

times, since the number of strategies is finite). In each iteration we include one weakly dominated

strategy for each player, until we reach the original game ΓK , so that:

σ? is a NE in Γ1 −→ σ? is a NE in ΓK

Importantly, the opposite implication is not true! σ? is a NE in Γ 9 σ? is a NE in ΓNW . A

NE of the original game can be removed by weak iteration.

Give an example of a Nash equilibrium of a game that is not a Nash equilibrium of the game where

strategies have been removed by iterated weak dominance.

PSNE = {(D,L), (D,R)}

Both U and M are weakly dominated by D. If we first eliminate strategy U , we then eliminate

strategy L and we can then eliminate strategy M , yielding as prediction (D,R). If we change the

order of elimination, we could end up with (D,L) as a prediction.
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P2

L R

U 5,1 4,0

P1 M 6,0 3,1

D 6,4 4,4

Exercise 3: Correlated Equilibrium

Consider the game depicted below. Show that the proposed correlated strategy profile is in fact a

correlated equilibrium.

P1

P2

L R

U 0,0 2,1

D 1,2 0,0

P1

P2

L R

U 1
3

1
3

D 1
3 -

To define a correlated equilibrium you have to define the probability space, the partitions and the

strategies for each player. We proceed as follows:

1. Define the set of outcomes Ω and its associated probability measure (the probabilities over

the outcomes we want to induce).

Ω = {UL,UR,DL,DR}

π(UL) = π(UR) = π(DL) =
1

3
π(DR) = 0

2. Define the partition over outcomes so that each player cannot distinguish between states for

the world that have the same action for her:

P1 = {{UL,UR}, {DL,DR}}

P2 = {{UL,DL}, {UR,DR}}

3. Define the strategies each player will play upon receiving the message σ = (σ1, σ2):

σ1(UL) = σ1(UR) = U σ1(DL) = σ1(DR) = D

σ2(UL) = σ2(DL) = L σ2(UR) = σ2(DR) = R

We will now check that this is a correlated equilibrium that induces the probabilities over the

outcome that we are looking for. To show that σ = (σ1, σ2) is a correlated equilibrium we have to

show that σ1 ∈ BR1(σ2) and σ2 ∈ BR2(σ1).

• The correlated device draws {U,L}.
For P1, he assigns the same probability to {U,L} and {U,R}. He believes that P2 is ran-
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domizing with probability 1/2. 5 If he plays U , he gets 0× 1/2 + 2× 1/2 = 1, whereas if he

plays D he expects to get 1× 1/2 + 0× 1/2 = 1/2. Therefore, BR1(UL) = U .

Similarly, for P2, his expected payoffs from playing L are 0 × 1/2 + 2 × 1/2 = 1/2, which is

greater than his expected payoff from playing R 1×1/2+0×1/2 = 1/2. Hence BR2(UL) = L.

• The correlated device shows {U,R}.
The BR1(UR) = U . For P2, playing R yields higher profits than L, so BR2(UR) = R.

• The correlated device shows {D,L}.
For P1, he will recognize that P2 will play L with probability 1, and hence BR1(DL) = D.

P2, however, believes 1 is randomizing 50/50, so that his payoff from playing L is greater

than that of playing R. BR2(DL) = L.

• The correlated device will draw {D,R} with probability zero, so we do not need to worry

about this case.

When UL is drawn equilibrium strategies of players induce (U,L), when UR is drawn they induce

(U,R), when DL is drawn they induce (D,L), and they do so one third of the time each. Therefore,

[(Ω, π), P, σ] as above defined is a correlated equilibrium.

The payoff profile induced by this equilibrium is (1,1):

u1(·) =
1

3
× 0 +

1

3
× 2 +

1

3
× 1 = 1

u2(·) =
1

3
× 0 +

1

3
× 1 +

1

3
× 2 = 1

Exercise 4: Anti-Coordination

Two players must choose whether to specialize – they must choose between being a hunter and a

gatherer. After they choose, they meet to play a game. If both are hunters, or both are gatherers,

they get no benefit from specialization, and receive a utility of zero. If one is a hunter and one a

gatherer, the hunter receives 2 and the gatherer 1 unit of utility.

1. Write the normal form of the game.

P2

P1

H G

H 0,0 2,1

G 1,2 0,0

5This 1/2 probability comes from Bayes rule:

Pr(UL|U) =
Pr(UL|U) Pr(UL)

Pr(U)
=

1/3

1/3 + 1/3
=

1

2

10



2. Find the symmetric Nash equilibrium in which both players employ the same strategy.

The PSNE = {(G,H), (H,G)} is not symmetric. Hence, we move to mixed strategies.

Consider P2 plays H with probability p to make P1 indifferent between his options:

0p+ 2(1− p) = p+ 0(1− p) ↔ p = 2/3

σ1(H) = 2/3 σ1(G) = 1/3

σ2(H) = 2/3 σ2(G) = 1/3

MSNE = σ =

{(
σ1(H) =

2

3
, σ1(G) =

1

3

)
;

(
σ2(H) =

2

3
, σ2(G) =

1

3

)}
3. Find a symmetric correlated equilibrium (probabilities remain the same when we interchange

rows for columns) which Pareto dominates the symmetric Nash equilibrium. The correlated

equilibrium may use public randomization if you wish, but you must show it is a correlated

equilibrium by showing that neither player wishes to deviate from the recommendation of the

randomization device.

To find a correlated equilibrium that is a Pareto improvement, we look at the payoff profile

of the MSNE:

0
2

3

2

3
+ 2

2

3

1

3
+ 1

1

3

2

3
+ 0

1

3

1

3
=

2

3

The payoff profile is (2/3, 2/3), and so we have to find a correlated equilibria that yields

better payoffs for at least one player.

Many of you rightly pointed out that the payoff matrix is the same as in the previous exercise,

so the solution from exercise 3 is applicable here. It would correspond to the payoff profile of

(1, 1) in the graph above. There are, as the graph shows, many other correlated equilibria.

Let’s induce the centralized Pareto efficient outcome: (3/2, 3/2). Recall that, to define a

correlated equilibrium, we must specify:

1. The probability space: Ω = {HG,GH}, with π(HG) = π(GH) = 1/2. Notice that,

when written in matrix form, these probabilities yield a symmetric equilibrium.
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2. The partition over outcomes:

P1 = {{HG}, {GH}}

P2 = {{HG}, {GH}}

3. The strategies that will induce this equilibrium:

σ1(HG) = H σ1(GH) = G

σ2(HG) = G σ2(GH) = H

We verify that this correlated equilibrium has no profitable deviations (ie, we check the BR

of each player).

BR1(HG) = H BR1(GH) = G

BR2(HG) = G BR2(GH) = H

Exercise 5: Trembling Hand Perfection

A strategy profile σ is trembling hand perfect (THP) if there exists a sequence of strategy profiles

σn → σ with σni (si) > 0 for all si ∈ Si and all i ∈ I such that σi(si) > 0 implies that si is a BR to

σn−i. Prove that every THP profile is a Nash equilibrium.

WTS: σ is THP → σ is NE. In other words, THP ⊆ NE.

Direct proof. By definition, σ is THP, so there exists a sequence that satisfy the conditions of the

definition. So, for any player i and strategy si ∈ Si played with positive probability σi(si) > 0:

ui
(
si, σ

n
−i
)
≥ ui

(
s′i, σ

n
−i
)

∀s′i ∈ Si

This holds for a trembling sequence. By continuity of u(·), taking the limits:

limσn
−i→σ−i ui

(
si, σ

n
−i) = ui(si, σ−i

)
limσn

−i→σ−i ui
(
s′i, σ

n
−i) = ui(s

′
i, σ−i

)}ui (si, σ−i) ≥ ui
(
s′i, σ−i

)
∀i, s′i ∈ Si

Take another strategy s′′i such that σi (s′′i ) > 0 in the NE. We will also have:

ui
(
s′′i , σ−i

)
≥ ui

(
s′i, σ−i

)
, s′i ∈ Si (2)

As si is also a NE, we will have that both:

ui (s′′i , σ−i) ≥ ui (si, σ−i)

ui (si, σ−i) ≥ ui (s′′i , σ−i)

}
ui (si, σ−i) = ui

(
s′′i , σ−i

)
(3)

The two conditions 2 and 3 imply that σ is a NE. 6

6These two conditions are the ones stated in the definition of NE in the supplementary notes.
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Give an example of a Nash equilibrium in a 2x2 game which is not trembling hand perfect and

explain why.

The key here is that a NE that contains a weakly dominated strategy is not THP. Consider the

following game:

P1

P2

L R

U 1,1 0,0

D 1,0 2,1

PSNE = {(U,L), (D,R)}

However, (U,L) is not THP as U is weakly dominated by D. To see this, take any fully mixed

strategy σ2 for P2 and evaluate P1’s payoffs:

u1(U, σ2) = σ2(L) < σ2(L) + 2σ2(R) = u1(D,σ2)∀σ2(R) > 0

Thus, there are no fully mixed strategy sequences that yield U as a BR for P1. Any positive

probability for P2 to play R makes P1 strictly prefer D.

Exercise 6: Becker

There are 2 groups, each making a non-negative bid bk. The utility of group k is:

uk = (bk − b−k)− β
(bk − b−k)2

2
−
ckb

2
k

2

a.&b.&c. Show that a Nash equilibrium exist and it is unique. When is it interior?

Recall the proposition from the supplementary notes:

Proposition. A NE exists 7 in game Γ = [I,∆Si, ui(·)] if for all i = 1, . . . , I:

• Si is a nonempty convex, and compact subset of some Euclidean space RM .

• ui(s1, . . . , sI) is continuous in S = (s1, ..., sI) and quasi-concave in si

The strategies in this case are bids.

• Bids must be compact: closed and bounded. In principle, bk ∈ [0,∞]. By economic

theory, no bidder can bid an infinite amount of resources. So bids are bounded by an

arbitrarily large enough B: bk ∈ [0, B]. In addition, bk is trivially convex and non empty.

• ui is trivially continuous in S. For quasi-concavity, note:

∂2uk
∂b2k

= −β − ck < 0

uk is concave and hence quasi-concave.

7Alternatively, you can simply find the Nash equilibrium and this will show it exists.
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We have now shown that the NE exists. We now move to show that it is interior and it is

unique. To do this, we find the NE.

Note that b = (bk, b−k) is a NE iff bk ∈ BRk(b−k). For a given b−k bk is the best response

correspondence if uk(bk, b−k) ≥ uk(b
′
k, b−k) for all b′k ∈ [0, B]. This is exactly the maxbk uk

given b−k. The conditions we imposed on the existence of the NE guarantee that we can find

such max.

∂uk
∂bk

: 1− β(bk − b−k)− ckbk = 0

BRk(b−k) = bk =
1 + βb−k
ck + β

BR−k(bk) = b−k =
1 + βbk
c−k + β

These functions are both single-valued and linear. This means that, for positive values of ck,

c−k, they must intercept only once. 8 Hence, the NE is unique.

To study whether it is interior, we look at the solution to the fixed point.

b?k = BRk(BR−k(b
?
k))

b?k =
c−k + 2β

ckc−k + β(ck + c−k)

Given the parameter values (strictly positive by assumption), bidding zero is never a BR.

∀ck, c−k, β > 0 b?k 6= 0 as BRk(0) > 0

Hence, the NE is interior.

e. Higher costs lead to lower bids.

∂b?k
∂ck

= − (c−k + 2β)(c−k + β)

(ckc−k + β(ck + c−k))
2 < 0 ∀(ck, c−k, β) ∈ R3

++

∂b?k
∂c−k

= − βck + 2β2

(ckc−k + β(ck + c−k))
2 < 0 ∀(ck, c−k, β) ∈ R3

++

Thus, with positive cost parameters, both bids are decreasing in both costs. The statement

is true.

f. Less efficiency leads to lower transfers.

Taking β as the inefficiency parameter, and interpreting as transfer the difference between

the two bids:

T = b?k − b?−k =
c−k − ck

ckc−k + β(ck + c−k)

∂T

∂β
= −

c2
−k − c2

k

(ckc−k + β(ck + c−k))
2

8To see this, you can express both BRs in terms of one of the bids:

BRk(b−k) = bk =
1 + βb−k

ck + β
−→ b−k =

ck + β

β
bk −

1

β

BR−k(bk) = b−k =
1 + βbk
c−k + β

−→ BR−k(bk) =
β

c−k + β
bk +

1

β

The slope of one is the inverse of the other. For strictly positive parameters, the functions intercept only once.
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The sign of ∂T/∂β depends on the relationship between ck and c−k.

• When ck > c−k, then b?−k > b?k so that T < 0 and ∂T/∂β > 0. When transfers are

negative, an increase in β increases the transfer.

• When ck < c−k, then b?−k < b?k so that T > 0 and ∂T/∂β < 0. When transfers are

positive, an increase in β decreases the transfer.

This means that less efficiency (a higher β) decreases the absolute transfer when the transfer

is positive, and increases the absolute transfer when the transfer is negative: less efficiency

leads to lower transfers in absolute terms, and the statement is correct.

∂b?k − b?−k
∂β

< 0
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