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Abstract of the Dissertation

Three Essays on Herding and Group Reputation

by

Yi Zhang

Doctor of Philosophy in Economics

University of California, Los Angeles, 2007

Professor David K. Levine, Co-chair

Professor Christian Hellwig, Co-chair

This dissertation, in broad terms, focuses on the theoretical analysis of the mech-

anisms of human interaction in the context of sequential decision-making under

imperfect information.

The first chapter analyzes a sequential decision model with one-sided commit-

ment in which decision makers are allowed to choose the time of acting (exercising

a risky investment option A) or waiting. The existing literature assumes an ex-

ogenous ordering of decision makers, in which only one decision maker moves in

each period in an exogenously given order. If information previously aggregated

dominates their own private information, individuals ignore their own private

information and follow their predecessors – herding occurs. Consequently, their

decisions are uninformative to others, which prevents information aggregation.

Therefore, initial realization of signals can have long-term consequences and herd

behavior is often error prone. My main question of inquiry is: if we allow decision

makers to choose the time of acting or waiting, will herd behavior be more or less

error prone? I characterize herd behavior under endogenous ordering and show

that with endogenous ordering, if the number of decision makers is large and

x



decision makers are patient enough, at any fixed time, nearly all decision makers

wait due to the negligible information disclosed. In this case, if decision makers

can be forced to move with an exogenous order, the resulting equilibrium is more

efficient because exogenous ordering tends to aggregate more information.

The second chapter investigates the two-sided commitment case, in which

decision makers have the third choice, exercising a safe investment option B.

Results obtained in this case are similar to those found in the one-sided commit-

ment case. However, one striking result is that with endogenous ordering and

two-sided commitment, even though waiting forever is a dominated strategy, if

the number of decision makers is large and decision makers are patient enough,

decision makers wait too long.

The third chapter explores what group reputation is and models its forma-

tion and evolution. I define a player’s group reputation as the belief others have

about the characteristics of the group he belongs to, which is based only on group

signals. A player’s individual reputation is derived from his group reputation by

adding individual signals. A model of group reputation of civil servants is con-

structed to identify the strategic behavior of potential bribers and civil servants,

the corresponding levels of corruption, and possible anti-corruption policies along

with their effects.
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CHAPTER 1

Robust Herding with Endogenous Ordering and

One-Sided Commitment

1.1 Introduction

How do people make sequential decisions under imperfect information? One

may learn from his own experiences or from other people’s choices. For instance,

individuals currently using a particular software package may also have the choice

of upgrading to a new software package. They may have some knowledge about

the new software package. But if the new software package is brand new and

private information is limited, individuals may be inclined to wait for other people

to discourse more information about the newly released software before they take

any action. If the information previously aggregated dominates their own private

information, individuals ignore their own private information and follow their

predecessors – herding occurs.1 Herding prevents the aggregation of information.

Therefore, the initial realization of signals can have long-term consequences and

herd behavior is often error prone. The decisions of the first few individuals’ can

have a disproportional effect.

1Çelen and Kariv (2004) attempt to make the distinction between herding and information
cascades. They point out that in a herd, individuals choose the same action; but they may
have acted differently if the realization of private signals had been different. In an information
cascade, individuals ignore their own private information and follow their predecessors. Thus,
information cascades in Çelen and Kariv (2004) are equivalent to herding in this paper.
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Bikhchandani, Hirshleifer, and Welch (1992), hereafter BHW, and Banerjee

(1992) investigate herd behavior under exogenous ordering, in which the deci-

sion ordering is exogenously given and only one individual moves in each period.

The restaurant example in Banerjee (1992) may fit the exogenous ordering set-

ting.2 But in many other cases, endogenous ordering which allows individuals

to choose the time of acting or waiting may be more appropriate. For instance,

when individuals decide to buy a new car or computer, they have the option to

buy immediately or to wait. With endogenous ordering, there exist strategic in-

teractions among decision makers. Due to the free-rider problem, some decision

makers may have incentives to delay their decisions and learn from other decision

makers, while others make decisions immediately if they feel confident that their

decisions will produce desirable results. Furthermore, more than one individual

can act or wait during the same period and consequently their decisions can be

clustered together. Thus, under the endogenous ordering setting, the insight will

be completely different from that under the exogenous ordering setting. Our

main question of inquiry is: if we allow decision makers to choose the time of

acting or waiting, will herd behavior be more or less error prone?

Continuing with the software upgrading example, there is a new software

package A available for upgrading. Individuals are currently using a software

package B. It is known that with some prior probability A is better than B.

Each individual also gets a private signal indicating whether A is better or not.

Upgrading to A is an irreversible choice. Once they upgrade to A, they are

committed to their decisions.3 But there is no commitment to continuing using

2In the restaurant example in Banerjee (1992), there are two restaurants next to each other.
Individuals arrive at the restaurants in sequence. Observing the choices made by people before
them, they decide on either one of the two restaurants.

3There exists extremely high “disruption costs” involved in upgrading. In other words, we
could see this upgrade as a perpetual American call option. Individuals are free to exercise the
option at any time they want. But once they exercise the option, they cannot reverse their

2



B. If individuals have not upgraded, they continue to have the option of doing

so.4 Thus, the software upgrading example belongs to the setting of one-sided

commitment.

In contrast, the restaurant example in Banerjee (1992) is a two-sided com-

mitment decision problem. Individuals choose between two restaurants. Choos-

ing either one of the two restaurants is irreversible. Once an individual chooses

one restaurant, he cannot go to the other any more. For exogenous ordering,

one-sided commitment is equivalent to two-sided commitment because once an

individual chooses A or B at his turn, he is out of the game and cannot change

his decision any more. But for endogenous ordering, individuals in a one-sided

commitment decision problem have two choices: A or B. If they choose A, they

cannot change. If they choose B, they still have the option of choosing A later.

Individuals in a two-sided commitment decision problem have three choices: A,

B or wait. If they choose A or B, they cannot change. If they choose to wait,

they still have the option of choosing A or B later. In other words, waiting

is equivalent to choosing B in a one-sided commitment decision problem with

endogenous ordering.

In this paper we concentrate on the one-sided commitment case.5 We analyze

an endogenous ordering sequential decision model in which decision makers are

allowed to choose the time of acting (upgrading to the new software package

A) or waiting (continuing using the current software package B). To emphasize

the information aspect, we focus on pure information externalities: each decision

maker’s payoff only depends on his own action and the state of nature. Our main

results are summarized below.

decision.
4Throughout the paper, we use the software upgrading example to illustrate our model.
5Its companion (Zhang 2007b) investigates the two-sided commitment case.
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1. With endogenous ordering, we show the existence of a symmetric equilib-

rium with the following monotonicity property: in each period there exists

a critical type of individual who upgrades with probability less than one;

all types of individuals with private signals indicating a higher value of A

upgrade with probability one; all others wait.

2. In this particular equilibrium, there is a strategic phase, followed by a herd-

ing phase. In the strategic phase, depending on their own private signals,

some individuals upgrade, while others wait. In the herding phase, all the

remaining individuals either upgrade immediately or wait forever regard-

less of their own private signals. Compared with the exogenous ordering

setting, disclosure of public information has a completely different impact

on the strategic and herding behavior of individuals. In particular, if the

game is in the upgrade herding phase, all the remaining individuals upgrade

immediately and the game ends in one period. Further disclosure of public

information will not have any effect.

3. With endogenous ordering, if the number of individuals is large and individ-

uals are patient enough, at any fixed time, nearly all individuals wait due

to the negligible information disclosed. In this case, if individuals can be

forced to move with an exogenous order, the resulting equilibrium is more

efficient because exogenous ordering tends to aggregate more information.

There are some papers which investigate the decision problem with endoge-

nous ordering. For example, Chamley and Gale (1994) investigate a discrete time

investment model which assumes the timing of decisions is endogenous, that is,

individuals try to find the best place in the decision-making queue. In their

model, there are only two types of individuals: those with investment options

4



and those without. Those individuals without investment options are assumed to

be passive. In contrast, in our model we allow for a finite or an infinite number

of types of individuals. Given one’s own signals, each individual decides whether

to upgrade immediately or to wait and learn the true value of the new software

package A by observing other individuals’ actions.

The rest of the paper is organized as follows. Section 1.2 begins with an

example of two types of individuals in an attempt to capture our main idea.

Section 1.3 provides the setup of a general model and shows the existence of a

symmetric equilibrium with the monotonicity property. Then we characterize

herd behavior under exogenous ordering and endogenous ordering and discuss

our main results. Several extensions and modifications of the general model are

presented in section 1.4 before we offer our conclusion in Section 1.5.

1.2 An Example

We begin with an example of two types of individuals who choose to either up-

grade to the new software package A or to continue using the current software

package B. If an individual continues using the current software package B, he

gets a reservation utility V 0, normalized to zero. The benefit from A, denoted

by V , is the same for all individuals and is either 1/2 or −1/2, with equal prior

probability. Each individual privately observes a conditionally independent signal

about the true value of V . Individual i’s signal µi is either H or L as described

in the following table, where p > 1/2. The common discount factor is δ. Al-

though the discount factor does not play a role in the decision making under the

exogenous ordering setting, it does under the endogenous ordering setting.

Before characterizing and comparing the equilibrium results of exogenous and

5



Table 1.1: Signal Probabilities

Pr(µi = H|V ) Pr(µi = L|V )

V = 1/2 p 1− p

V = −1/2 1− p p

endogenous ordering settings, we describe some benchmark cases for comparison.

If there are no interactions among the individuals, each individual makes a self-

decision using his own private signal and the prior probabilities. The probability

for each individual making the correct choice is p, the precision of the private

signal. If there is a social planner who can gather the private information from

all individuals, then based on all private signals and the prior probabilities, we can

imagine that the probability for the social planner of making the correct choice

is increasing in the number of conditionally independent signals. Certainly, in

the complete information case, the true value of the new software package A

is known and everyone makes the correct choice. In the other extreme case, if

individuals make random decision, based on only the prior probabilities, then

only half of the individuals will make the correct choice.

1.2.1 Setting I: exogenous ordering

The ordering of individuals is an exogenous sequence and known to all. Individ-

uals differ in their positions in the queue and only one individual moves in each

period. Each individual observes the actions of those before him. When it is

his turn to make a decision, he decides to upgrade or to reject A according to

current public information and his own private signal. With N individuals, the

game ends in N periods. Following the tie-breaking rule in BHW, we assume that

an individual indifferent between upgrading and rejecting A chooses to upgrade

6



or to reject A with equal probability.6

Similar to the specific model in BHW, the equilibrium decision rule is de-

scribed as follows. In period 1, the first individual rejects A if his signal is L and

upgrades to A if his signal is H as the signal precision p > 1/2. In period 2,

the second individual can infer the first individual’s signal from his predecessor’s

decision. Based on his own private signal and the inferred first individual’s signal,

the second individual makes the following decision: if the first individual rejects

A, he rejects A if his signal is L and rejects or upgrades to A with equal prob-

ability 1/2 if his signal is H; if the first individual upgrades to A, he upgrades

to A if his signal is H and rejects or upgrades to A with equal probability 1/2 if

his signal is L. In period 3, we have one of the following three situations: (1) if

both predecessors reject A, then the rejecting herding phase starts – the follow-

ing individuals reject A regardless of their own signals; (2) if both predecessors

upgrade to A, the upgrade herding phase starts – the following individuals up-

grade to A regardless of their own signals; (3) if one predecessor rejects A while

the other upgrades to A, the third individual and the forth individual are in the

same situation as the first individual and the second individual respectively. The

following individuals are in the similar situation until the game ends in period

N .

1.2.2 Setting II: endogenous ordering

Individuals are allowed to choose the time of acting (upgrading to A) or waiting

(continuing using B). In any period t, each individual decides to wait or to

upgrade to A if he has not upgraded to A yet. If he waits, he gets reservation

utility V 0 = 0 and has the option of upgrading to A later.

6The tie-breaking rule matters for the efficiency of the exogenous ordering setting. In section
1.4.1, we discuss the general tie-breaking rule.
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The equilibrium decision rule has the following properties (See the Appendix):

(i) Period 1: For the symmetric equilibrium, there exists a δ∗(N, p),

which is decreasing in N and increasing in p. In period 1, type L

individuals will wait to see type H’s action. Type H individuals will

upgrade to A for sure if δ ≤ δ∗(N, p). Otherwise, type H individuals

will upgrade to A with some probability 0 < pH,1 < 1, where pH,1 is

decreasing in δ and N , and increasing in p.

(ii) Large Number of Individuals: If the number of individuals

is large, there exists a δ∗(p) = limN→∞ δ∗(N, p). If δ ≤ δ∗(p), type

H individuals will upgrade to A for sure in period 1. If δ > δ∗(p),

at any fixed time, nearly all individuals wait due to the negligible

information disclosed.

Intuitively, in period 1, for type L individuals, the expected benefit from

upgrading to A is (1
2
− p) < 0. The expected benefit from waiting is greater

than or equal to the benefit from waiting forever, which equals zero. Therefore,

a type L individual will wait for sure in period 1. For type H individuals, in

period 1, the expected benefit from upgrading to A is (p − 1
2
) > 0. If no one

else upgrades to A, the expected benefit from waiting is equal to the benefit from

waiting forever, which equals zero. A type H individual will upgrade to A if no

one else upgrades. For a symmetric equilibrium, this means pH,1 (the probability

of type H individuals upgrading to A in period 1) is greater than zero. If discount

factor δ is low enough, type H individuals will upgrade to A for sure. As the

number of individuals N increases, precision of signals p decreases, and discount

factor δ increases, type H individuals have a higher incentive to wait and pH,1

decreases.

For the case of large number of individuals, if pH,1 is strictly greater than 0,

8



by the Law of Large Numbers, the true value of the new software package A will

be (approximately) revealed in the second period. In this case, if individuals are

patient enough, then all individuals will wait in period 1 such that pH,1 is equal

to 0. This is a contradiction. Thus, if the number of individuals is large and

individuals are patient enough, in any period ∞ > t > 1, the game is “almost”

the same as the period 1 game. The probability of type H individuals upgrading

to A in period t, which is denoted by pH,t, is equal to 0 or approximately equal to

0. Consequently, at any fixed time, there is a negligible proportion of individuals

upgrading to A and so is the information disclosed.

1.2.3 Expected Number of Correct Choices

Let X(N) represent the expected number of correct choices with N individuals

in the game. Subsequently, X(N)/N is the average expected number of correct

choices. We present the following results.

Result 1.1 (See the Appendix) For the example above, given δ and p,

(i) Impatient Individuals: If δ ≤ δ∗(p), the equilibrium with en-

dogenous ordering is more efficient in terms of inducing a larger ex-

pected number of correct choices.

(ii) Patient Individuals: If δ > δ∗(p), there exists an N∗, such that

if N < N∗, the equilibrium with endogenous ordering is more efficient

in terms of inducing a larger expected number of correct choices; there

also exists an N∗∗, such that if N > N∗∗, the equilibrium with exoge-

nous ordering is more efficient in terms of inducing a larger expected

number of correct choices.

9



Figure 1.1 sketches out the implication of Result 1.1. We can see that if N is

large and individuals are patient (stage III in the figure), endogenous ordering is

worse than self-decision, not to mention exogenous ordering.

N

X(N)/N

Endogenous 

Ordering (Patient)

Exogenous 

Ordering

Self Decision

*N **N
Stage I Stage II Stage III 

Complete 

Information 1

1/2

p

Social Planner

Random 

Decision

Endogenous 

Ordering (Impatient)

Figure 1.1: Average Expected Number of Correct Choices

1.3 The General Model

In this section, we first provide the basic setup of our general model. Then we

characterize herd behavior under exogenous ordering and endogenous ordering.

1.3.1 Basic Setup

There are N individuals. All are rational and risk neutral. There is a new

software package A available for upgrading. Individuals currently use software

package B. Assume that the true value of A, denoted by V , is chosen by nature at

10



the beginning of the game, and is unknown to the individuals.7 Individuals only

know V follows some prior distribution F0(V ), with density f0(V ). To emphasize

the information aspect, we concentrate on pure information externalities: each

individual’s payoff only depends on his own action and the state of nature.

We focus on the case that upgrading to A is an irreversible binary choice.8

The indivisibility of the action space is important. As in Banerjee (1992), since

the choices made by individuals are not sufficient statistics for the information

they have, the error prone herding can occur.9

At the beginning of the game, individual i in the market freely observes some

conditionally independent private signal µi ∈ [µ, µ], which follows some distribu-

tion F (µi|V ), with density f(µi|V ). Assume individuals are more likely to get a

higher private signal (indicating higher value of A) if the underlying V is higher.

Assumption 1: F (µi|V ) satisfies the Monotone Likelihood Ratio Property

7Rosenberg (1976) points out that there exist two types of technological uncertainty. First,
when an innovation is introduced, it may have some imperfections: “Innumerable ‘bugs’ may
need to be worked out. The first user often takes considerable risk.” In addition, current
innovation could be improved further in the future. There are two possible situations for the
future possible improvement: expected or unexpected. If it is expected, then it only increases
the benefit from waiting by some constant amount. If it is unexpected, it will not affect the
strategic interactions of the current game until it happens. Thus, we ignore the second type of
technological uncertainty here. When we investigate the switch from one innovation to another,
the future improvement, either expected or unexpected, could be incorporated.

8There exists extremely high “disruption costs” involved in upgrading. In other words, we
could see this upgrade as a perpetual American call option as in Grenadier (1999). In Grenadier
(1999), decisions are made in continuous time and there is a state variable, which follows some
exogenous continuous time stochastic process. In this paper, we assume discrete time decision
and no exogenous state variable.

9Banerjee (1992) assumes a continuous action space and gets similar herding results as BHW.
This is due to the degenerate payoff function as pointed out by BHW. Park (2001) assumes
perfect observability. Therefore, in his model players share the same information and hidden
information is not an issue.
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(MLRP)10 with respect to V , i.e.

f(µi|V1)

f(µi|V2)
increasing in µi ∀V1 > V2

If individual i upgrades to A in period t, then in the following periods, ev-

eryone knows individual i upgrades to A in period t. The public information

available at the beginning of period t is denoted by ht, which includes the prior

information of V , actions and the equilibrium strategy profile of all individuals

before t. If an individual does not upgrade to A, he gets reservation utility V 0,

normalized to zero. The common discount factor is δ.

1.3.2 Herd Behavior with Exogenous Ordering

If we assume the ordering of individuals is exogenous, in which only one individual

moves in each period in an exogenously given order, then there are no strategic

interactions among individuals. When it is one’s turn to make a decision, he

decides whether to upgrade or to reject A given the current public information

and his own private signal.

The equilibrium decision rule is a sequence of critical values

{µ∗t (ht)}t

such that the individual making the decision in period t upgrades to A if his

private signal µt > µ∗t (ht); otherwise, he rejects A.11 We can see this sequence

of critical values is not monotone. If the individual in period t upgrades to A,

10Landsberger and Meilijson (1990) point out that this property holds for exponential type
families (binomial with the same number of trials, normal with equal variances, etc.) as well
as for some non-exponential cases such as uniform with the same left endpoint.

11For notation simplicity, we assume the following tie-breaking rule: if an individual i is
indifferent between upgrading and rejecting A, he rejects it whenever µi ∈ (µ, µ] and upgrades
whenever µi = µ.
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which indicates µt > µ∗t (ht), this is “good” news for the individual in period t+1.

Thus, in period t+1, µ∗t+1(ht+1) ≤ µ∗t (ht). Conversely, if the individual in period

t rejects A, µ∗t+1(ht+1) ≥ µ∗t (ht).

The game is in the strategic phase when the sequence of critical values {µ∗t (ht)}t

fluctuates in between µ and µ. In the strategic phase, each individual’s decision

depends on both the current public information and his own private signal.

Once the sequence of critical values {µ∗t (ht)}t “breaks” either one of the

boundaries, herding occurs. The upgrade herding phase starts in period τ if

µ∗τ (hτ ) = µ. The individual in period τ will upgrade to A regardless of his own

private signal. His decision is, therefore, uninformative to others. Thus, µ∗t (ht) =

µ∗t−1(ht−1) = µ ∀t > τ (see figure 1.2). All the following individuals will upgrade

to A. Similarly, the rejecting herding phase starts in period τ if µ∗τ (hτ ) = µ. All

*( )
t t
h

t

Upgrade Herding Phase Strategic Phase 

N

Figure 1.2: Upgrade herding with exogenous ordering

the following individuals will reject A and µ∗t (ht) = µ∗t−1(ht−1) = µ ∀t > τ (see

figure 1.3).

Since public information disclosed only needs to offset the information from

the last individual’s action before the herding phase starts, both upgrade herding

and rejecting herding are not robust to the public disclosure of information. If in

13
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Figure 1.3: Rejecting herding with exogenous ordering

a certain period N ≥ t ≥ τ there is some public information disclosed such that

µ < µ∗t (ht) < µ, then the strategic phase starts again.

1.3.3 Herd Behavior with Endogenous Ordering

If we allow the individuals to choose the time of acting (upgrading to the new

software package A) or waiting (continuing using the current software package

B), there exist strategic interactions among the individuals.

The timing of endogenous ordering is as follows:

In period 1, each individual decides whether or not to upgrade to A.

If he does not upgrade to A in period 1, he gets reservation utility

V 0 = 0 and has the option of upgrading later.

In period 2, all the remaining individuals decide to upgrade to A or

to wait after observing others’ actions in period 1.

The subsequent periods are the same as period 2. The game continues

until everyone upgrades to A. The time period is denoted by t, t =

1, 2, 3, ....

14



The benefit from waiting is the information revealed about the new software

package A by other individuals. The cost of waiting is the difference between the

gain from A and the reservation utility.

We first investigate the relationship between the incentive to wait and private

information. We prove any possible symmetric equilibrium must be monotone

with respect to personal private signals. Then, we show the existence and describe

characteristics of a symmetric equilibrium with the monotonicity property by

backward induction in two cases: a continuous private signal space and a finite

discrete private signal space.12

1.3.3.1 Information and Incentives

The following remark shows that if an individual gets a higher private signal, given

the same history, he believes that V will be higher, i.e., the posterior distribution

of V satisfies MLRP with respect to private signals.

Remark 1.1

f(V |µi, ht)

f(V |µ′i, ht)
increasing in V ∀µi > µ′i

Proof. See the Appendix.

The benefit from upgrading to A in period t for individual i is:

UA(µi; ht) = EV |µi;htV (1.1)

The benefit from waiting in period t for individual i is:

UW (µi; ht; s−i,t) = δEHt+1(µi;ht;s−i,t)[max{UA(µi; ht+1); U
W (µi; ht+1; s−i,t+1)}]

(1.2)

12Since the information disclosed through the backward induction construction process may
not be monotone, the equilibrium is not necessarily unique.
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where s−i,t represents the strategy profile of all other individuals except for in-

dividual i starting from period t; Ht+1(µi; ht; s−i,t) represents the set of histories

at the beginning of period t + 1 given µi, ht and s−i,t. From the above equation,

we can solve the benefit from waiting forever UW = 0. In this paper, we focus on

the symmetric equilibrium.

Lemma 1.1 Under the worst news, individuals will never upgrade to A. In our

model, the worst news from period t is no one upgrading to A in period t. Under

this worst news, the waiting herding phase starts in period t+1. Thus, with finite

number of N individuals, the game lasts at most N periods before a herding phase

starts.

Proof. See the Appendix.

The next proposition proves that for any possible symmetric equilibrium, it

must be monotone with respect to personal private signals. That is, individu-

als with private signals indicating higher value of A have a higher incentive to

upgrade.

Proposition 1.1

UA(µi; ht)− UW (µi; ht; s−i,t) increasing in µi ∀ht; s−i,t

Proof. See the Appendix.

1.3.3.2 Symmetric Equilibrium with the Monotonicity Property

Proposition 1.2 There exists a symmetric equilibrium with the following mono-

tonicity property.

(i) Case I: Continuous private signal space
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The equilibrium strategy profile is a sequence of decreasing critical values:

{µ∗t (ht)}t. In period t with history ht, individuals with µ > µ∗t (ht) upgrade;

others wait.

Case II: Finite discrete private signal space

The equilibrium strategy profile is a sequence of decreasing critical values

{µ∗t (ht)}t and a sequence of probability of critical type {pµ∗t (ht)}t. In period

t with history ht, individuals with µ > µ∗t (ht) upgrade; the critical type

individuals upgrade with probability pµ∗t (ht); others wait.13

(ii) Large Number and Patient Individuals: If number of individuals is

large and individuals are patient enough, at any fixed time, nearly all indi-

viduals wait due to the negligible information disclosed.

Proof. See the Appendix.

Part (i) is from the construction in the above proposition. For part (ii), if the

number of individuals is large and µ∗1(h1) strictly smaller than µ (finite discrete

private signal space: pµ strictly greater than 0), by the Law of Large Numbers, the

true value of the new software package A will be (approximately) revealed in the

second period. In this case, if individuals are patient enough, then all individuals

will wait in period 1 such that µ∗1(h1) = µ (finite discrete private signal space:

pµ = 0). This is a contradiction. Thus, if the number of individuals is large and

individuals are patient enough, in any period ∞ > t > 1, the game is “almost”

the same as the period 1 game: either µ∗t (ht) = µ∗t−1(ht−1) or µ∗t (ht) ≈ µ∗t−1(ht−1)

(finite discrete private signal space: either pµ = 0 or pµ ≈ 0). Thus, at any fixed

13For simplicity, pµ∗t (ht) < 1 is chosen in the construction process so that there is the possi-
bility for the type µ∗t (ht) individuals to remain in the game in period t+1. Moreover, µ∗t (ht) is
the highest type in period t + 1. If a herding phase starts, all the remaining individuals in the
game either upgrade (pµ∗t (ht) = 1) or wait forever (pµ∗t (ht) = 0).
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time, there is a negligible proportion of individuals upgrading to A and so is the

information disclosed.

From the above proposition, with endogenous ordering the sequence of critical

values is monotone. Intuitively, in any period t, all the individuals with µ >

µ∗t−1(ht−1) upgraded before t. In period t, we only need to consider the individuals

with private signals between µ and µ∗t−1(ht−1). Thus, µ∗t (ht) ≤ µ∗t−1(ht−1).

Upgrade herding occurs in period τ when µ∗τ (hτ ) = µ (finite discrete signal

space: µ∗τ (hτ ) = µ; pµ∗τ (hτ ) = 1). All the remaining individuals upgrade to A

in period τ regardless of their own private signal, and then the game ends (see

figure 1.4).
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t
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Figure 1.4: Upgrade herding with endogenous ordering

Waiting herding occurs in period τ when µ∗τ (hτ ) = µ∗τ−1(hτ−1) (finite discrete

signal space: µ∗τ (hτ ) = µ∗τ−1(hτ−1); pµ∗τ (hτ ) = 0). Since no new information is dis-

closed in the following periods, the game remains the same. µ∗t (ht) = µ∗t−1(ht−1)

∀t > τ (finite discrete signal space: µ∗t (ht) = µ∗t−1(ht−1); pµ∗t (ht) = pµ∗t−1(ht−1) = 0

∀t > τ) (see figure 1.5).

Since the public information disclosed only needs to offset the information

from individuals’ actions in the last period before the waiting herding phase
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Figure 1.5: Waiting herding with endogenous ordering

starts, the waiting herding phase is not robust to the public disclosure of infor-

mation. If in some period t > τ there is some public information disclosed such

that µ∗t (ht) < µ∗t−1(ht−1) (finite discrete signal space: µ∗t (ht) ≤ µ∗t−1(ht−1) with

pµ∗t (ht) > 0), then the strategic phase starts again. However, if the game falls into

the upgrade herding phase, disclosure of public information after τ will not have

any effect since the upgrading herding phase only lasts one period.

1.3.4 Robustness

We summarize the results of the impact of public information disclosure on herd-

ing behavior under exogenous and endogenous ordering settings respectively in

the following table.14

By the game construction, under the exogenous ordering setting, the game

lasts exactly N periods. Disclosure of public information after period N will not

have any effect. Under the endogenous ordering setting, the upgrading herding

phase only lasts one period. Disclosure of public information after τ will not have

any effect. In contrast, the waiting herding phase under the endogenous ordering

14Here, we only talk about the unexpected disclosure of public information. Section 1.4.2
investigates more variations of public information disclosure.
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Table 1.2: Robustness with respect to Disclosure of Public Information

exogenous ordering endogenous ordering

upgrade rejecting upgrade waiting

herding herding herding herding

time of disclosure N ≥ t > τ Not Robust Not Robust Robust Not Robust

of public information t > N Robust Robust Robust Not Robust

setting could last forever. Disclosure of public information after τ or even N may

have some effect.

1.3.5 Expected Number of Correct Choices

Proposition 1.3 In the general model, if the number of individuals is large and

individuals are patient enough, exogenous ordering is more efficient than endoge-

nous ordering in terms of inducing a larger expected number of correct choices, if

individuals can be forced to move with an exogenous order.

Proof. From proposition 1.2, with endogenous ordering, if the number of in-

dividuals is large and individuals are patient enough, at any fixed time, nearly

all individuals wait due to the negligible information disclosed. In contrast, in

the self-decision case, each individual still utilizes his own private information

and the prior probabilities. Exogenous ordering is even better since it tends to

aggregate more information by forcing some of the individuals to make decisions

in some given periods. Similar to result 1.1, if the number of individuals is large

and individuals are patient enough, as long as the private signals and the prior

probabilities are informative, exogenous ordering is more likely to induce a larger

expected number of correct choices than endogenous ordering.
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1.4 Extensions and Modifications

In this section, we first discuss the general tie-breaking rule for the exogenous

ordering setting in the example from section 1.2 (with two types of individuals).

Then we study the effect of the disclosure of public information for the general

model.

1.4.1 General Tie-breaking Rule

In the example presented in section 1.2.1 with exogenous ordering, we follow the

same tie-breaking rule in BHW. An individual indifferent between upgrading and

rejecting A chooses to upgrade or to reject A with equal probability. Now, we

consider the general tie-breaking rule: whenever individuals are indifferent

between upgrading and rejecting A, type H individuals and type L individuals

choose to upgrade to A with probability pH and pL respectively. We denote

the general tie-breaking rule as {pH ; pL}. The tie-breaking rule in BHW is a

special case of the general tie-breaking rule with {pH = 1/2; pL = 1/2}. With

the general tie-breaking rule {pH ; pL}, the equilibrium decision rule is the same

as the equilibrium decision rule in section 1.2.1 except for the tie-breaking cases.

Result 1.2 (See the Appendix) In the example with exogenous ordering presented

in section 1.2.1, with the general tie-breaking rule {pH ; pL}, the expected number

of correct choices is increasing in pH − pL. In particular, {pH = 1; pL = 0} is the

optimal tie-breaking rule in terms of inducing the maximum expected number of

correct choices. Conversely, {pH = 0; pL = 1} is the worst tie-breaking rule and

the equilibrium result of exogenous ordering in this case is the same as the result

of self-decision in terms of inducing the same expected number of correct choices.
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Intuitively, when type H individuals are indifferent between upgrading and

rejecting A, type L individuals will for sure reject. In this case, for type H indi-

viduals, the higher pH is, the more informative their actions are to the followers

in the sense of revealing their own private signals. Conversely, for type L indi-

viduals, when they are indifferent between upgrading and rejecting A, the lower

pL is, the more informative their actions are to the followers.

1.4.2 Disclosure of Public Information

Disclosure of public information could have an influence on the strategic and

herding behavior of individuals. In BHW, with exogenous ordering, initial public

disclosure can make some individuals worse off ex ante. All individuals welcome

public information once a herding phase has begun. Herding is delicate with

respect to new information. A small amount of public information can shatter

a long-lasting herd. With multiple public information disclosures, individuals

eventually settle into the correct herd.

In contrast, in our general model with endogenous ordering, we distinguish the

unexpected and expected disclosures of public information and announcements

of future disclosure of public information in the strategic phase and the waiting

herding phase respectively.

Proposition 1.4 (i) Disclosure of public information in the strategic

phase

If there is a disclosure of public information in the strategic phase, either un-

expected or expected, all the remaining individuals welcome the new information

in the ex ante sense. The announcements of future disclosure of public infor-

mation will increase the individuals’ incentive to wait. However, ex post some
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individuals may be worse off.

(ii) Disclosure of public information in the waiting herding phase

If there is a disclosure of public information in the waiting herding phase,

either unexpected or expected, all the remaining individuals welcome the new in-

formation. And the waiting herding phase is delicate with respect to the new

information. A small amount of public information can shatter a waiting herding

phase. The announcements of future disclosure of public information do not have

any effect on the waiting herding phase until the disclosure of public information

actually happens.

(iii) Multiple disclosures of public information

Multiple disclosures of public information do not always let individuals settle

into the correct herd.

Proof. See the Appendix.

1.5 Conclusion

In this paper, we investigate herd behavior of sequential decisions under imperfect

information with one-sided commitment. We provide a framework of endogenous

ordering to allow decision makers to choose the time of acting or waiting. We

show the existence and characteristics of the equilibrium. We find that herd

behavior under endogenous ordering is not necessarily less error prone than herd

behavior under exogenous ordering due to the free-rider problem. In particular,

if the number of individuals is large and individuals are patient enough, under

endogenous ordering nearly all individuals are willing to wait and free-ride on

others. Consequently, nearly all individuals wait due to the negligible information

disclosed. In this case, if decision makers can be forced to move with an exogenous
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order, the resulting equilibrium is more efficient because exogenous ordering tends

to aggregate more information. That is to say, more “freedom” may not be better.

Another feature of the endogenous ordering framework is that in a herding

phase, all the remaining individuals either act immediately or wait forever re-

gardless of their own private signals. Thus, there exists an investment surge or

collapse when herding starts. Compared with the exogenous ordering setting, dis-

closure of public information has a completely different impact on the strategic

and herding behavior of individuals. In particular, if the game is in the upgrade

herding phase, all the remaining individuals upgrade immediately and the game

ends in one period. Further disclosure of public information will not have any

effect.

1.6 Appendix

Proof of the Equilibrium Decision Rule with Endogenous Ordering

(The Example from Section 1.2)

(i) Period 1:

In period 1, for type L individuals, the expected benefit from upgrading to A

is (1
2
− p) < 0. The expected benefit from waiting is greater than or equal to the

benefit from waiting forever, which equals zero. Therefore, type L individuals

will wait for sure in period 1. For type H individuals, the expected benefit from

upgrading to A is (p− 1
2
) > 0. If no one else upgrades to A, the expected benefit

from waiting is equal to the benefit from waiting forever, which equals zero. Thus,

a type H individual will upgrade to A if no one else upgrades.

Let us check the condition that a type H individual i will upgrade to A for

sure in period 1 when all other type H individuals upgrade to A for sure in period
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1. The expected benefit from upgrading to A is (p− 1
2
). Since all other type H

individuals upgrade to A for sure in period 1, all of the possible information is

disclosed for individual i in period 2. If the number of individuals upgrading to A

in period 1 is greater than or equal to dN−1
2
e, where dN−1

2
e is the smallest integer

greater than or equal to N−1
2

, in period 2 individual i will upgrade to A. Thus,

the expected benefit from waiting is

δ

N−1∑

j=dN−1
2 e

Prob(j upgrade in period 1|µi = H)[Prob(V = 1/2|j+1 H in N)− 1/2]

where

Prob(j upgrade in period 1|µi = H) =
(

N − 1
j

)
[pj+1(1− p)N−1−j + (1− p)j+1pN−1−j ]

Prob(V = 1/2|j+1 H in N) =
p2j+2−N

p2j+2−N + (1− p)2j+2−N

Let the expected benefit from upgrading to A equal the expected benefit from

waiting. We get

δ∗(N, p) =
p− 1

2
N−1∑

j=dN−1
2 e

(
N−1

j

)
[pj+1(1− p)N−1−j + (1− p)j+1pN−1−j ][ p2j+2−N

p2j+2−N+(1−p)2j+2−N − 1/2]

Clearly, δ∗(N, p) is an increasing function of p and decreasing function of N .

Figure 1.6 illustrates the locus of δ∗(N, p = 0.6) decreasing in N . The upper

right area is the mixed strategy area of type H individuals, in which type H

individuals upgrade to A with some probability 0 < pH,1 < 1. The lower left area

is the pure strategy area that type H individuals will for sure upgrade to A in

period 1. The intuition is that as the number of individuals increases, everyone

has a higher incentive to wait. To induce type H individuals to upgrade to A

with probability one, the discount factor should be low.

Figure 1.7 illustrates the locus of δ∗(N, p) shifting up as p increases. As the

precision of signals p increases, type H individuals have a higher incentive to

upgrade to A. Thus, the pure strategy area of type H individuals becomes larger

as p increases.
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Figure 1.6: The Example from Section 1.2 – Endogenous Ordering
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Figure 1.7: The Example from Section 1.2 – Endogenous Ordering

For the symmetric equilibrium, in period 1 type L individuals will wait to see

type H’s action. Type H individuals will upgrade to A for sure if δ ≤ δ∗(N, p).

Otherwise, type H individuals will upgrade to A with some probability 0 < pH,1 <
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1.

Similar to the proof of Proposition 1 in Chamley and Gale (1994), as pH,1 and

N increases, information in period 2 is more informative in the sense of Blackwell.

From Blackwell’s theorem, the expected benefit from waiting increases. As δ in-

creases, the expected benefit from waiting increases. As p decreases, the expected

benefit from upgrading to A decreases.

To keep type H individuals indifferent between upgrading to A immediately

and waiting, we must have pH,1 decreasing in δ and N , and increasing in p.

Figure 1.8 illustrates the locus of pH,1 when N = 3.
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Figure 1.8: The Example from Section 1.2 – Endogenous Ordering: N=3

(ii) Large Number of Individuals:

If the number of individuals is large, from the above proof we can easily

check that δ∗(p) = limN→∞ δ∗(N, p) = 2p−1
p

. In another way, we may find δ∗(p)

under the condition that a type H individual i is indifferent between upgrading

and waiting when he knows the true value of the new software package A will
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be revealed in the second period. That is δ∗(p) is the solution of the following

equation.

p− 1/2 = δEV |µi;h1 [max{V ; 0}] = δ[1/2p + 0(1− p)]

If δ ≤ δ∗(p), regardless of the number of individuals in the game, type H

individuals will for sure upgrade in period 1, since δ∗(p) ≤ δ∗(N, p). If pH,1 is

strictly greater than 0, by the Law of Large Numbers, the true value of the new

software package A will be (approximately) revealed in the second period. In this

case, if δ > δ∗(p), then all individuals will wait in period 1 such that pH,1 is equal

to 0. This is a contradiction. Thus, if the number of individuals is large and

individuals are patient enough, in any period ∞ > t > 1, the game is “almost”

the same as the period 1 game. The probability of type H individuals upgrading

to A in period t, which is denoted by pH,t, is equal to 0 or approximately equal

to 0. Otherwise, similarly as in period 1, if there exists some finite period T such

that pH,T strictly greater than 0, then all individuals will wait till period T + 1.

This means pH,t = 0 ∀t ≤ T . That is a contradiction. Consequently, at any fixed

time, there is a negligible proportion of individuals upgrading to A and so is the

information disclosed.

Proof of Result 1.1

(Complete information) With complete information, the true value of

A is known. Everyone makes the correct choice, which means XCI(N)/N = 1.

Certainly, this is the upper bound of X(N)/N .

(Social planner) If there is a social planner who can gather the private

information from all the individuals, then based on all the private signals and the
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prior probabilities,

XSP (N)/N =
N∑

j>N/2

(
N

j

)
pj(1− p)N−j + 1{N is even}

[(
N

N/2

)
pN/2(1− p)N/2 1

2

]

where 1{N is even} is the indicator function; if N is even, 1{N is even} = 1;

otherwise, 1{N is even} = 0.

(Self-decision) If there are no interactions among the individuals, each

individual makes a self-decision using his own private signal and the prior prob-

abilities. Then based on the precision of private signals, XSD(N)/N = p.

(Exogenous ordering) With exogenous ordering, according to the equi-

librium decision rule in section 1.2.1, we have



XEX(1)/1 = p

XEX(2)/2 = p

XEX(N)/N = p2 + p(1− p)
{

N−2
N

[
1

N−2
XEX(N − 2)− 1

2

]
+ 1

} ∀N ≥ 3

We can easily check that XEX(3)/3 > p and XEX(4)/4 > p. Then plugging

back to the above formula and by induction, we have XEX(N)/N > XSD(N)/N =

p, ∀N ≥ 3. As N →∞, XEX(N)/N → p1/2(1+p)
1−p+p2 , where 1/2(1+p)

1−p+p2 > 1.

(Endogenous ordering)

With endogenous ordering, XEN(1)/1 = p; XEN(2)/2 = p. The results are

equivalent to the cases of self-decision and exogenous ordering with 1 or 2 indi-

viduals respectively.

(i) Impatient Individuals

According to the equilibrium decision rule in section 1.2.2, if δ ≤ δ∗(p) ≤
δ∗(N, p), type H individuals will for sure upgrade in period 1 and type L indi-

viduals will wait to see type H’s action. In period 2, all the possible information
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is disclosed. Thus, conditional on V = 1/2,

XEN |V =1/2(N)/N =
N∑

j>N/2

(
N

j

)
pj(1− p)N−j + 1{N is even}

[(
N

N/2

)
pN/2(1− p)N/23/4

]

+
j<N/2∑

j=0

(
N

j

)
pj(1− p)N−jj/N

Conditional on V = −1/2,

XEN |V =−1/2(N)/N =1{N is even}

[(
N

N/2

)
(1− p)N/2pN/21/4

]

+
j<N/2∑

j=0

(
N

j

)
(1− p)jpN−j(N − j)/N

Unconditional average expected number of corrected choices,

XEN(N)/N =
1

2
XEN |V =1/2(N)/N +

1

2
XEN |V =−1/2(N)/N

Using the exhaustion method (Matlab simulation), we can check that

XSP (N)/N > XEN(N)/N > XEX(N)/N for N ≥ 3 and not too large. For N

large but still less than N∗, XEN |V =1/2(N)/N converges to 1 and XEN |V =−1/2(N)/N

to p. Then XEN(N)/N converges to p1+p
2p

. 1+p
2p

> 1/2(1+p)
1−p+p2 implies XEN(N)/N >

XEX(N)/N for N large.

(ii) Patient Individuals

If δ > δ∗(p), by continuity, there exists an N∗ such that δ = δ∗(N∗, p), since

δ∗(N, p) is decreasing in N . If N ≤ N∗, then δ ≤ δ∗(N, p). Similar as the proof

of Impatient Individuals case above, in period 1, type H individuals will upgrade

to A for sure and type L individuals will wait to see type H’s action. In period

2, all the possible information is disclosed. We have XEN(N)/N > XEX(N)/N

for N ≤ N∗.

If N is large enough, according to the equilibrium decision rule in section

1.2.2, for any finite period t, pH,t is either zero or approximately equal to zero.
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At any fixed time, nearly all individuals wait due to the negligible information

disclosed. Thus, there exists an N∗∗ such that for all N > N∗∗, XEN |V =1/2(N)/N

converges to zero and XEN |V =−1/2(N)/N to one. Then XEN(N)/N converges to

1/2, which is less than XSD(N)/N = p.

Proof of Remark 1

Since it has been assumed that the private signals µ are independent conditional

on V , we have

f(V |µi, ht) =
f(µi, ht|V )f0(V )

f(µi, ht)
=

f(µi|V )f(ht|V )f0(V )

f(µi, ht)

f(V |µ′i, ht) =
f(µ′i, ht|V )f0(V )

f(µ′i, ht)
=

f(µ′i|V )f(ht|V )f0(V )

f(µ′i, ht)

This implies

f(V |µi, ht)

f(V |µ′i, ht)
=

f(µi|V )f(ht|V )f0(V )
f(µi,ht)

f(µ′i|V )f(ht|V )f0(V )

f(µ′i,ht)

=
f(µi|V )

f(µ′i|V )

f(µ′i, ht)

f(µi, ht)

Then ∀V1 > V2,

f(V1|µi,ht)
f(V1|µ′i,ht)

f(V2|µi,ht)
f(V2|µ′i,ht)

=

f(µi|V1)
f(µ′i|V1)

f(µ′i,ht)

f(µi,ht)

f(µi|V2)
f(µ′i|V2)

f(µ′i,ht)

f(µi,ht)

=

f(µi|V1)
f(µi|V2)

f(µ′i|V1)

f(µ′i|V2)

By Assumption 1,

f(µi|V1)

f(µi|V2)
increasing in µi ∀V1 > V2

So, we have ∀µi > µ′i
f(V1|µi,ht)
f(V1|µ′i,ht)

f(V2|µi,ht)
f(V2|µ′i,ht)

=

f(µi|V1)
f(µi|V2)

f(µ′i|V1)

f(µ′i|V2)

≥ 1

which means

f(V |µi, ht)

f(V |µ′i, ht)
increasing in V ∀µi > µ′i
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Proof of Lemma 1.1

If in period t individual i chooses to wait, then UA(µi; ht) ≤ UW (µi; ht; s−i,t).

By the Martingale property,

UA(µi; ht) = EHt+1(µi;ht;s−i,t)U
A(µi; ht+1)

The set of histories Ht+1(µi; ht; s−i,t) can be decomposed into two disjoint sets:

HA
t+1(µi; ht; s−i,t) and HW

t+1(µi; ht; s−i,t), where HA
t+1(µi; ht; s−i,t) is the set of his-

tories in period t + 1 in which individual i will upgrade to A according to some

strategy si of individual i; HW
t+1(µi; ht; s−i,t) is the set of histories in period t + 1

in which individual i will wait according to some strategy si of individual i. Then

we have

UA(µi; ht) = EHA
t+1(µi;ht;s−i,t)U

A(µi; ht+1) + EHW
t+1(µi;ht;s−i,t)U

A(µi; ht+1)

By equation 1.2,

UW (µi; ht; s−i,t) = δEHt+1(µi;ht;s−i,t)[max{UA(µi; ht+1); U
W (µi; ht+1; s−i,t+1)}]

= δ[EHA
t+1(µi;ht;s−i,t)U

A(µi; ht+1) + EHW
t+1(µi;ht;s−i,t)U

W (µi; ht+1; s−i,t+1)]

Suppose under the worst news from period t individual i still upgrades in

period t + 1. Then he will for sure upgrade in period t + 1, which means

HW
t+1(µi; ht; s−i,t) = ∅.

Back to the above equations, we have

UA(µi; ht) = EHA
t+1(µi;ht;s−i,t)U

A(µi; ht+1)

UW (µi; ht; s−i,t) = δEHA
t+1(µi;ht;s−i,t)U

A(µi; ht+1)

Since HW
t+1(µi; ht; s−i,t) = ∅, UW (µi; ht; s−i,t) > UW = 0. We have

UA(µi; ht) > UW (µi; ht; s−i,t). This is a contradiction.
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In our model, the worst news in period t is no one upgrades. Under this

worst news, the waiting herding phase starts in period t+1. To keep the upgrade

going, at least one individual must upgrade to A in each period. Thus, with finite

number of N individuals, the game lasts at most N periods before a herding phase

starts.

Proof of Proposition 1.1

By Remark 1, f(V |µ, ht) satisfies MLRP with respect to µ. According to Lands-

berger and Meilijson (1990), F (V |µi, ht) first order stochastic dominates (FOSD)

F (V |µ′i, ht) for any µi > µ′i. So, UA(µi; ht) ≥ UA(µ′i; ht) for any ht.

Similar to the proof of Lemma 1.1, by the Martingale property,

UA(µi; ht) = EHA
t+1(µi;ht;s−i,t)U

A(µi; ht+1) + EHW
t+1(µi;ht;s−i,t)U

A(µi; ht+1)

UW (µi; ht; s−i,t) = δEHt+1(µi;ht;s−i,t)[max{UA(µi; ht+1); U
W (µi; ht+1; s−i,t+1)}]

= δ[EHA
t+1(µi;ht;s−i,t)U

A(µi; ht+1) + EHW
t+1(µi;ht;s−i,t)U

W (µi; ht+1; s−i,t+1)]

Thus, for any non-negative integer j

UA(µi; ht)− δjUW (µi; ht; s−i,t) = (1− δj+1)EHA
t+1(µi;ht;s−i,t)U

A(µi; ht+1)

+ EHW
t+1(µi;ht;s−i,t)[U

A(µi; ht+1)− δj+1UW (µi; ht+1; s−i,t+1)]
(1.3)

Let us check the incentives of waiting and upgrading for individual i who has

a lower private signal µ′i < µi. Similarly, we have

UA(µ′i; ht)− δjUW (µ′i; ht; s−i,t) = (1− δj+1)EHA
t+1(µ

′
i;ht;s−i,t)U

A(µ′i; ht+1)

+ EHW
t+1(µ

′
i;ht;s−i,t)[U

A(µ′i; ht+1)− δj+1UW (µ′i; ht+1; s−i,t+1)]
(1.4)

By Lemma 1.1, the game lasts at most N periods before a herding phase

starts. Suppose either an upgrading or a waiting herding phase starts in period

T ≤ N , which means no one will upgrade to A after period T given history hT and
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strategy profile (si,T , s−i,T ). With a herding phase starting in period T , no more

new information is disclosed in period T + 1, which means UW (µi; hT ; s−i,T ) =

UW (µ′i; hT ; s−i,T ) = 0. Thus, in period T ,

UA(µi; hT )− δjUW (µi; hT ; s−i,T ) ≥ UA(µ′i; hT )− δjUW (µ′i; hT ; s−i,T )

Back to period T−1, since herding starts in period T , HA
T (µi; hT−1; s−i,T−1) =

HA
T (µ′i; hT−1; s−i,T−1) and HW

T (µi; hT−1; s−i,T−1) = HW
T (µ′i; hT−1; s−i,T−1). By

equation 1.3 and 1.4,

UA(µi; hT−1)− δjUW (µi; hT−1; s−i,T−1) ≥ UA(µ′i; hT−1)− δjUW (µ′i; hT−1; s−i,T−1)

When j = 0, the above formula implies that individuals with private signals

indicating higher value of the new software package A have a higher incentive to

upgrade given the same public history in period T − 1. That is to say,

HA
T−1(µi; hT−2; s−i,T−2) ⊇ HA

T−1(µ
′
i; hT−2; s−i,T−2)

HW
T−1(µi; hT−2; s−i,T−2) ⊆ HW

T−1(µ
′
i; hT−2; s−i,T−2)

Back to period T − 2, by equation 1.3 and 1.4,

UA(µi;hT−2)− δjUW (µi; hT−2; s−i,T−2) = (1− δj+1)EHA
T−1(µ

′
i;hT−2;s−i,T−2)U

A(µi; hT−1)

+ (1− δj+1)EHA
T−1(µi;hT−2;s−i,T−2)∩HW

T−1(µ
′
i;hT−2;s−i,T−2)U

A(µi;hT−1)

+ EHW
T−1(µi;hT−2;s−i,T−2)[U

A(µi; hT−1)− δj+1UW (µi;hT−1; s−i,T−1)]

UA(µ′i;hT−2)− δjUW (µ′i; hT−2; s−i,T−2) = (1− δj+1)EHA
T−1(µ

′
i;hT−2;s−i,T−2)U

A(µ′i;hT−1)

+EHA
T−1(µi;hT−2;s−i,T−2)∩HW

T−1(µ
′
i;hT−2;s−i,T−2)[U

A(µ′i; hT−1)− δj+1UW (µ′i; hT−1; s−i,T−1)]

+EHW
T−1(µi;hT−2;s−i,T−2)[U

A(µ′i;hT−1)− δj+1UW (µ′i; hT−1; s−i,T−1)]

For hT−1 ∈ [HA
T−1(µi; hT−2; s−i,T−2) ∩HW

T−1(µ
′
i; hT−2; s−i,T−2)],

UW (µ′i; hT−1; s−i,T−1) ≥ UA(µ′i; hT−1)
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which implies UA(µ′i; hT−1)−δj+1UW (µ′i; hT−1; s−i,T−1) ≤ (1−δj+1)UA(µ′i; hT−1) ≤
(1− δj+1)UA(µi; hT−1). Thus,

UA(µi; hT−2)− δjUW (µi; hT−2; s−i,T−2) ≥ UA(µ′i; hT−2)− δjUW (µ′i; hT−2; s−i,T−2)

And so on, for any t ≤ T

UA(µi; ht)− δjUW (µi; ht; s−i,t) ≥ UA(µ′i; ht)− δjUW (µ′i; ht; s−i,t)

Let j = 0. We are done.

Proof of Proposition 1.2

(i) Case I: Continuous private signal space

Let Gn(ht) represent the subgame starting from period t with history ht, where

n is the number of individuals remaining in this subgame.15 Use backward in-

duction.

Step 1 Start from the subgame with only one individual, G1(ht). We can find

a critical value µ∗t (ht) which is the solution of UA(µ∗t (ht); ht) = 0. An

individual with µ > µ∗t (ht) upgrades; otherwise, he waits forever.

Step 2 Now consider the subgame with two individuals G2(ht), by Lemma 1.1,

this subgame lasts at most 2 periods. In period t + 1, there are three

possible cases: (1) there are still two individuals remaining in the game

(waiting herding starts); (2) there is only one individual remaining in the

game (G1(ht+1)); (3) there is no one remaining in the game (game ends).

By Proposition 1.1, for any symmetric equilibrium, individuals with private

signals indicating higher value of A have a higher incentive to upgrade.

15n must be compatible with ht.
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We can find a critical value µ∗t (ht) which is a function of µ∗t+1(ht+1) in

the subsequent subgame G1(ht+1). Individuals with µ > µ∗t (ht) upgrade;

otherwise, they wait.

...

...

Step N Continue to the subgame with N individuals GN(ht), by Lemma 1.1,

this subgame lasts at most N periods. Similarly, there are N + 1 possi-

ble cases: (1) there are still N individuals remaining in the game (waiting

herding starts); (2) there are N − 1 individuals remaining in the game

(GN−1(ht+1));. . .; (N) there is only 1 individual remaining in the game

(G1(ht+1)); (N +1) there is no one remaining in the game (game ends). We

can find a critical value µ∗t (ht) which is a function of µ∗t+1(ht+1) in the sub-

sequent subgames GN−1(ht+1), . . . ,G1(ht+1). Individuals with µ > µ∗t (ht)

upgrade; otherwise, they wait.

We can see in the final Step N if we replace ht with h1 then GN(ht) is the

original game.

Case II: Finite discrete private signal space

Denote the private signal space by {µ1, µ2, . . . , µK}, where µ1 < µ2 < . . . <

µK . The strategy profile starting from period t, st = {Pτ}∞τ=t, where Pτ =

{pµk,τ}K
k=1 and pµk,τ represents the probability of type µk upgrading to A in

period τ . For µi, UA(µi; ht) − UW (µi; ht; {Pτ}∞τ=t) is continuous in pµk,τ ∀µk, τ .

Let GM,n(ht) represent the subgame starting from period t with history ht, where

M and n are the set of possible types and the number of individuals remaining

in this subgame respectively.16

16M, n must be compatible with ht.
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By Proposition 1.1, for any symmetric equilibrium, individuals with private

signals indicating higher value of A have a higher incentive to upgrade. Thus,

with a finite number of individuals and a finite number of individual types, back-

ward induction can be used to construct the symmetric equilibrium through the

following steps.

Step 1.1 Start from the subgame G{µ1},1(ht) with only one individual whose

private signal is µ1. That is, M = {µ1}. Since all the information is

disclosed, UW (µ1; ht; {pµ1,t}) = UW = 0. There are three possible cases:

1.1.1 If UA(µ1; ht) < 0, {pµ1,t = 0} is the equilibrium strategy profile in

period t. The continuation game in the following periods is the same

as the period t game since hτ = ht, ∀τ > t.

1.1.2 If UA(µ1; ht) = 0, {0 ≤ pµ1,t ≤ 1} will be the equilibrium strategy

profile in period t. If the game does not end in period t, the continua-

tion game in period t + 1 is the same as the period t game G{µ1},1(ht),

since ht+1 = ht.

1.1.3 If UA(µ1; ht) > 0, {pµ1,t = 1} is the equilibrium strategy profile and

game ends.

...

Step 1.N Consider the subgame G{µ1},N(ht) with N individuals whose private

signals are µ1. Since all the information is disclosed, UW (µ1; ht; {pµ1,t}) =

UW = 0. Same as the subgame G{µ1},1(ht), there are three possible cases:

1.N.1 If UA(µ1; ht) < 0, {pµ1,t = 0} is the equilibrium strategy profile in

period t. The continuation game in the following periods is the same

as the period t game since hτ = ht, ∀τ > t.
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1.N.2 If UA(µ1; ht) = 0, {0 ≤ pµ1,t ≤ 1} will be the equilibrium strategy

profile in period t. If the game does not end in period t, the continu-

ation game in period t + 1 is G{µ1},n(ht+1), where 0 < n < N . Note,

hτ = ht, ∀τ > t.

1.N.3 If UA(µ1; ht) > 0, {pµ1,t = 1} is the equilibrium strategy profile and

game ends.

Step 2.1 Now consider the subgame G{µ1,µ2},1(ht) with only one individual whose

type belongs to µ1, µ2. That is, M = {µ1, µ2}. There are three possible

cases:

2.1.1 If 0 ≥ UA(µ2; ht) ≥ UA(µ1; ht), then {pµ1,t = 0, pµ2,t = 0} is an

equilibrium strategy profile in period t. The continuation game in

the following periods is the same as the period t game since hτ = ht,

∀τ > t.

2.1.2 If UA(µ2; ht) > 0 > UA(µ1; ht), then µ1 type will for sure wait in pe-

riod t. Since all the information is disclosed, UW (µ2; ht; {pµ1,t, pµ2,t}) =

UW (µ1; ht; {pµ1,t, pµ2,t}) = UW = 0. Thus, {pµ1,t = 0, pµ2,t = 1} is an

equilibrium strategy profile in period t. If the game does not end in

period t, the continuation game in the following periods is the same

as the period t game since hτ = ht, ∀τ > t.

2.1.3 If UA(µ2; ht) ≥ UA(µ1; ht) ≥ 0, then {pµ1,t = 1, pµ2,t = 1} is an

equilibrium strategy profile and game ends.

...

Step 2.N Now consider the subgame G{µ1,µ2},N(ht) with N individuals whose

types belong to µ1, µ2. That is, M = {µ1, µ2}. There are three possible

cases:
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2.N.1 If 0 ≥ UA(µ2; ht) ≥ UA(µ1; ht), then {pµ1,t = 0, pµ2,t = 0} is an

equilibrium strategy profile in period t. The continuation game in

the following periods is the same as the period t game since hτ = ht,

∀τ > t.

2.N.2 If UA(µ2; ht) > 0 > UA(µ1; ht), then µ1 type will for sure wait in

period t. Consider the strategy profile in period t: {pµ1,t = 0, pµ2,t =

1}. There are two possible cases:

2.N.2.1 If UA(µ2; ht) − UW (µ2; ht; {pµ1,t = 0, pµ2,t = 1}) ≥ 0 >

UA(µ1; ht)−UW (µ1; ht; {pµ1,t = 0, pµ2,t = 1}), then {pµ1,t = 0, pµ2,t =

1} is an equilibrium strategy profile in period t. The continuation

game in period t + 1 is G{µ1},n(ht+1) if the game does not end in

period t, where 0 < n < N .17

2.N.2.2 If 0 > UA(µ2; ht) − UW (µ2; ht; {pµ1,t = 0, pµ2,t = 1}) ≥
UA(µ1; ht)−UW (µ1; ht; {pµ1,t = 0, pµ2,t = 1}), then decreasing pµ2,t

till 0 = UA(µ2; ht) − UW (µ2; ht; {pµ1,t = 0, pµ2,t}) ≥ UA(µ1; ht) −
UW (µ1; ht; {pµ1,t = 0, pµ2,t}) by continuity. The solution {pµ1,t =

0, pµ2,t} to the above formula is an equilibrium strategy profile in

period t. The continuation game in period t + 1 is G{µ1,µ2},n(ht+1)

if the game does not end in period t, where 0 < n < N .

2.N.3 If UA(µ2; ht) ≥ UA(µ1; ht) ≥ 0, then {pµ1,t = 1, pµ2,t = 1} is an

equilibrium strategy profile and game ends.

...

...

17Note, since the benefit from waiting is derived from the continuation game, we must con-
struct the entire scheme of the continuation game first, then find out if the conjectured strategy
profile {pµ1,t = 0, pµ2,t = 1} is indeed an equilibrium in period t. Same logic applies to the
following proof.
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Step K.1 Continue to the subgame G{µ1,µ2,...,µK},1(ht) with only one individual

whose type belongs to µ1, µ2, . . . , µK . That is, M = {µ1, µ2, . . . , µK}. There

are K + 1 possible cases:

K.1.1 If 0 ≥ UA(µK ; ht) ≥ UA(µK−1; ht) ≥ . . . ≥ UA(µ1; ht), then {pµ1,t =

0, pµ2,t = 0, . . . , pµK ,t = 0} is an equilibrium. The continuation game

in the following periods is the same as the period t game since hτ = ht,

∀τ > t.

K.1.2 If UA(µK ; ht) > 0 ≥ UA(µK−1; ht) ≥ . . . ≥ UA(µ1; ht), then µ1, µ2, . . . ,

µK−1 types will for sure wait in period t. Since all the informa-

tion is disclosed, UW (µK ; ht; {pµ1,t, pµ2,t, . . . , pµK−1,t, pµK ,t}) = . . . =

UW (µ1; ht; {pµ1,t, pµ2,t, . . . , pµK−1,t, pµK ,t}) = UW = 0. Thus, {pµ1,t =

0, pµ2,t = 0, . . . , pµK−1,t = 0, pµK ,t = 1} is an equilibrium strategy pro-

file in period t. If the game does not end in period t, the continuation

game in the following periods is the same as the period t game since

hτ = ht, ∀τ > t.

...

K.1.K If UA(µK ; ht) ≥ UA(µK−1; ht) ≥ . . . ≥ UA(µ2; ht) > 0 > UA(µ1; ht),

then µ1 type will for sure wait in period t. Same logic, {pµ1,t =

0, pµ2,t = 1, . . . , pµK ,t = 1} is an equilibrium strategy profile in pe-

riod t. If the game does not end in period t, the continuation game in

the following periods is the same as the period t game since hτ = ht,

∀τ > t.

K.1.K+1 If UA(µK ; ht) ≥ UA(µK−1; ht) ≥ . . . ≥ UA(µ1; ht) ≥ 0, then

{pµ1,t = 1, pµ2,t = 1, . . . , pµK ,t = 1} is an equilibrium strategy profile

and game ends.
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...

Step K.N Continue to the subgame G{µ1,µ2,...,µK},N(ht) with N individuals whose

types belong to µ1, µ2, . . . , µK . That is, M = {µ1, µ2, . . . , µK}. There are

K + 1 possible cases:

K.N.1 If 0 ≥ UA(µK ; ht) ≥ UA(µK−1; ht) ≥ . . . ≥ UA(µ1; ht), then {pµ1,t =

0, pµ2,t = 0, . . . , pµK ,t = 0} is an equilibrium. The continuation game

in the following periods is the same as the period t game since hτ = ht,

∀τ > t.

K.N.2 If UA(µK ; ht) > 0 ≥ UA(µK−1; ht) ≥ . . . ≥ UA(µ1; ht), then µ1, µ2, . . . ,

µK−1 types will for sure wait in period t. Consider the strategy profile

in period t: {pµ1,t = 0, pµ2,t = 0, . . . , pµK−1,t = 0, pµK ,t = 1}. There are

two possible cases:

K.N.2.1 If UA(µK ; ht)−UW (µK ; ht; {pµ1,t = 0, pµ2,t = 0, . . . , pµK−1,t =

0, pµK ,t = 1}) ≥ 0 > UA(µK−1; ht)−UW (µK−1; ht; {pµ1,t = 0, pµ2,t =

0, . . . , pµK−1,t = 0, pµK ,t = 1}), then {pµ1,t = 0, pµ2,t = 0, . . . , pµK−1,t =

0, pµK ,t = 1} is an equilibrium strategy profile in period t. If the

game does not end in period t, the continuation game in period

t + 1 is G{µ1,µ2,...,µK−1},n(ht+1), where 0 < n < N .

K.N.2.2 If 0 > UA(µK ; ht) − UW (µK ; ht; {pµ1,t = 0, pµ2,t = 0, . . . ,

pµK−1,t = 0, pµK ,t = 1}), then decreasing pµK ,t till 0 = UA(µK ; ht)−
UW (µK ; ht; {pµ1,t = 0, pµ2,t = 0, . . . , pµK−1,t = 0, pµK ,t = 1}) by

continuity. The solution {pµ1,t = 0, pµ2,t = 0, . . . , pµK−1,t = 0, pµK ,t}
to the above formula is an equilibrium strategy profile in period

t. If the game does not end in period t, the continuation game in

period t + 1 is G{µ1,µ2,...,µK},n(ht+1), where 0 < n < N .
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...

K.N.K If UA(µK ; ht) ≥ UA(µK−1; ht) ≥ . . . ≥ UA(µ2; ht) > 0 > UA(µ1; ht),

then µ1 type will for sure wait in period t. Consider the strategy profile

in period t: {pµ1,t = 0, pµ2,t = 1, . . . , pµK ,t = 1}. There are K possible

cases. Check if this strategy profile is an equilibrium strategy profile in

period t. If not, decrease pµ2,t from 1 to 0. Then decrease pµ3,t from 1

to 0. And so on, decrease pµK ,t from 1 to 0. Eventually, by continuity,

we will find a symmetric equilibrium for subgame G{µ1,µ2,...,µK},N(ht).

K.N.K+1 If UA(µK ; ht) ≥ UA(µK−1; ht) ≥ . . . ≥ UA(µ1; ht) ≥ 0, then

{pµ1,t = 1, pµ2,t = 1, . . . , pµK ,t = 1} is an equilibrium strategy profile

and game ends.

We can see at the final Step K if we replace ht with h1 then G{µ1,µ2,...,µK},N(h1)

is the original game.

(ii) Large Number and Patient Individuals:

If the number of individuals is large and µ∗1(h1) strictly smaller than µ (finite

discrete private signal space: pµ strictly greater than 0), by the Law of Large

Numbers, the true value of the new software package A will be (approximately)

revealed in the second period. In this case, if individuals are patient enough,

then all individuals will wait in period 1 such that µ∗1(h1) = µ (finite discrete

private signal space: pµ = 0). This is a contradiction. Thus, if the number of

individuals is large and individuals are patient enough, in any period ∞ > t > 1,

the game is “almost” the same as the period 1 game: either µ∗t (ht) = µ∗t−1(ht−1)

or µ∗t (ht) ≈ µ∗t−1(ht−1) (finite discrete private signal space: either pµ = 0 or

pµ ≈ 0). Otherwise, if there exists some finite period T such that µ∗t (ht) strictly

smaller than µ∗t−1(ht−1) (finite discrete private signal space: pµ strictly greater
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than 0), then all individuals will wait until period T + 1 since they are patient

enough. This means the probability for all types of individuals upgrading to A

is equal to zero ∀t ≤ T . That is a contradiction. Thus, at any fixed time, there

is a negligible proportion of individuals upgrading to A and so is the information

disclosed.

Proof of Result 1.2

According to the equilibrium decision rule in section 1.2.1, with the general tie-

breaking rule {pH ; pL}, we have XEX(1)/1 = XEX(2)/2 = p and ∀N ≥ 3

XEX(N)/N = p2 + p(1− p)
{

N − 2
N

(1 + pH − pL)
[

1
N − 2

XEX(N − 2)− 1
2

]
+ 1

}

We can easily check that XEX(3)/3 ≥ p and XEX(4)/4 ≥ p. Then plugging

back to the above formula and by induction, we have XEX(N)/N ≥ p, ∀N . As

N →∞, XEX(N)/N → p2+1/2p(1−p)(1−(pH−pL))
1−p(1−p)(1+(pH−pL))

.

Since ∀N , XEX(N)/N ≥ p > 1
2
, from the above formula, we can see

XEX(N)/N increasing in pH − pL. In particular, XEX(N)/N achieves its max-

imum when {pH = 1; pL = 0}. XEX(N)/N achieves its minimum p when

{pH = 0; pL = 1}. In other words, with the tie-breaking rule {pH = 0; pL = 1},
the equilibrium result of exogenous ordering is the same as the result of self-

decision in terms of inducing the same expected number of correct choices.

Proof of Proposition 1.4

(i) Disclosure of public information in the strategic phase

Suppose there is a disclosure of public information at the beginning of period

t which belongs to the strategic phase, either unexpected or expected. In the ex
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ante sense, without the new information, the expected payoff for individual i is

max{UA(µi; ht); U
W (µi; ht; s−i,t)}

With the new information, the expected payoff for individual i is

EH̃A
t (µi;ht;s−i,t)

UA(µi; h̃t) + EH̃W
t (µi;ht;s−i,t)

UW (µi; h̃t)

where H̃A
t (µi; ht; s−i,t) is the set of histories in period t in which with the new in-

formation individual i will upgrade according to some strategy si. H̃W
t (µi; ht; s−i,t)

is the set of histories in period t in which with the new information individual i

will wait according to some strategy si.

Following the same logic as presented in the proof of Proposition 1.1, by the

Martingale property,

UA(µi; ht) = EH̃t(ht;s−i,t)
UA(µi; h̃t)

= EH̃A
t (µi;ht;s−i,t)

UA(µi; h̃t) + EH̃W
t (µi;ht;s−i,t)

UA(µi; h̃t)

UW (µi; ht) = EH̃t(ht;s−i,t)
UW (µi; h̃t)

= EH̃A
t (µi;ht;s−i,t)

UW (µi; h̃t) + EH̃W
t (µi;ht;s−i,t)

UW (µi; h̃t)

Since

∀h̃t ∈ H̃A
t (µi; ht; s−i,t), U

A(µi; h̃t) ≥ UW (µi; h̃t)

∀h̃t ∈ H̃W
t (µi; ht; s−i,t), U

W (µi; h̃t) ≥ UA(µi; h̃t)

we have

EH̃A
t (µi;ht;s−i,t)

UA(µi; h̃t)+EH̃W
t (µi;ht;s−i,t)

UW (µi; h̃t) ≥ max{UA(µi;ht);UW (µi; ht; s−i,t)}

All the remaining individuals prefer to wait for the new information and make

the appropriate decision. Thus, they welcome the new information in the ex ante

sense.
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The announcements of future disclosure of public information will increase the

individuals’ incentive to wait until its disclosure. In this case, some individuals

may be worse off. For example, for the continuous private signal space, given the

original equilibrium strategy profile {µ∗t (ht)}t, now at the beginning of period τ

there is an announcement saying that in period τ + T there will be a disclosure

of public information. With this announcement the equilibrium strategy profile

changes to {µ̃∗t (ht)}t. Then for any history ht, we have µ̃∗t (ht) ≥ µ∗t (ht) ∀τ ≤
t < τ + T . There exists the possibility that µ̃∗t+1(ht+1) < µi ≤ µ∗t (ht). For these

individuals, they will upgrade in period t + 1 in both equilibria. But with less

information in the new equilibrium, they are worse off.

(ii) Disclosure of public information in the waiting herding phase

Similar to the disclosure of public information in the strategic phase, if there is

a disclosure of public information in the waiting herding phase, either unexpected

or expected, all the remaining individuals welcome the new information. They

prefer to wait for the new information and make the appropriate decision. The

waiting herding phase is indeed not robust as the disclosure of public information

only needs to induce the most optimistic individuals among the remainders to

upgrade. A small amount of positive information about the new software pack-

age A can shatter a waiting herding phase. Then a new strategic phase starts.

Everyone is better off in the ex ante sense.

Since in the waiting herding phase everyone has already waited, the announce-

ments of future disclosure of public information even more greatly increase the

incentive to wait. The waiting herding continues until the disclosure of public

information happens.

(iii) Multiple disclosures of public information

Unlike BHW, even though multiple disclosures of public information can even-
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tually shatter a waiting herding phase, they cannot always rule out the possibility

that individuals settle into the wrong upgrade herding. Suppose the multiple dis-

closures of public information eventually reveal that waiting is the better choice.

But as long as the individuals are optimistic enough, they will not wait for the

possible future multiple disclosures of public information. Furthermore, the up-

grade herding phase could start before the true value of the new software package

A is revealed. The game may end with the wrong upgrade herd conclusion.
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CHAPTER 2

Robust Herding with Endogenous Ordering and

Two-Sided Commitment

2.1 Introduction

How do people make sequential decisions under imperfect information? One

may learn from his own experiences or from other people’s choices. For instance,

individuals currently using a particular software package may also have the choice

of upgrading to a new software package. They may have some knowledge about

the new software package. But if the new software package is brand new and

private information is limited, individuals may be inclined to wait for other people

to discourse more information about the newly released software before they take

any action. If the information previously aggregated dominates their own private

information, individuals ignore their own private information and follow their

predecessors – herding occurs.1 Herding prevents the aggregation of information.

Therefore, the initial realization of signals can have long-term consequences and

herd behavior is often error prone. The decisions of the first few individuals’ can

have a disproportional effect.

1Çelen and Kariv (2004) attempt to make the distinction between herding and information
cascades. They point out that in a herd, individuals choose the same action; but they may
have acted differently if the realization of private signals had been different. In an information
cascade, individuals ignore their own private information and follow their predecessors. Thus,
information cascades in Çelen and Kariv (2004) are equivalent to herding in this paper.
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Bikhchandani, Hirshleifer, and Welch (1992), hereafter BHW, and Banerjee

(1992) investigate herd behavior under exogenous ordering, in which the deci-

sion ordering is exogenously given and only one individual moves in each period.

The restaurant example in Banerjee (1992) may fit the exogenous ordering set-

ting.2 But in many other cases, endogenous ordering which allows individuals

to choose the time of acting or waiting may be more appropriate. For instance,

when individuals decide to buy a new car or computer, they have the option to

buy immediately or to wait. With endogenous ordering, there exist strategic in-

teractions among decision makers. Due to the free-rider problem, some decision

makers may have incentives to delay their decisions and learn from other decision

makers, while others make decisions immediately if they feel confident that their

decisions will produce desirable results. Furthermore, more than one individual

can act or wait during the same period and consequently their decisions can be

clustered together. Thus, under the endogenous ordering setting, the insight will

be completely different from that under the exogenous ordering setting. Our

main question of inquiry is: if we allow decision makers to choose the time of

acting or waiting, will herd behavior be more or less error prone?

Continuing with the software upgrading example, there is a new software

package A available for upgrading. Individuals are currently using a software

package B. It is known that with some prior probability A is better than B.

Each individual also gets a private signal indicating whether A is better or not.

Upgrading to A is an irreversible choice. Once they upgrade to A, they are

committed to their decisions.3 But there is no commitment to continuing using

2In the restaurant example in Banerjee (1992), there are two restaurants next to each other.
Individuals arrive at the restaurants in sequence. Observing the choices made by people before
them, they decide on either one of the two restaurants.

3There exists extremely high “disruption costs” involved in upgrading. In other words, we
could see this upgrade as a perpetual American call option. Individuals are free to exercise the
option at any time they want. But once they exercise the option, they cannot reverse their
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B. If individuals have not upgraded, they continue to have the option of doing

so. Thus, the software upgrading example belongs to the setting of one-sided

commitment.

In contrast, the restaurant example in Banerjee (1992) is a two-sided com-

mitment decision problem. Individuals choose between two restaurants. Choos-

ing either one of the two restaurants is irreversible. Once an individual chooses

one restaurant, he cannot go to the other any more. For exogenous ordering,

one-sided commitment is equivalent to two-sided commitment because once an

individual chooses A or B at his turn, he is out of the game and cannot change

his decision any more. But for endogenous ordering, individuals in a one-sided

commitment decision problem have two choices: A or B. If they choose A, they

cannot change. If they choose B, they still have the option of choosing A later.

Individuals in a two-sided commitment decision problem have three choices: A,

B or wait. If they choose A or B, they cannot change. If they choose to wait,

they still have the option of choosing A or B later. In other words, waiting

is equivalent to choosing B in a one-sided commitment decision problem with

endogenous ordering.

In this paper we concentrate on the two-sided commitment case.4 We analyze

an endogenous ordering sequential decision model in which decision makers are

allowed to choose the time of acting (exercising a risky investment option A or a

safe investment option B) or waiting. Compared with the one-sided commitment

case, decision makers now have the third choice, exercising a safe investment

option B. To emphasize the information aspect, we focus on pure information

externalities: each decision maker’s payoff only depends on his own action and

the state of nature.

decision.
4Its companion (Zhang 2007a) investigates the one-sided commitment case.
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Results obtained in the two-sided commitment case are similar to those found

in the one-sided commitment case. That is, with endogenous ordering, if the

number of decision makers is large and decision makers are patient enough, at

any fixed time, nearly all decision makers wait due to the negligible information

disclosed. In this case, if decision makers can be forced to move with an exoge-

nous order, the resulting equilibrium is more efficient because exogenous ordering

tends to aggregate more information. However, one striking result is that with

endogenous ordering and two-sided commitment, even though waiting forever is a

dominated strategy, if the number of decision makers is large and decision makers

are patient enough, decision makers wait too long.

There are some papers which investigate the decision problem with endoge-

nous ordering. For example, Chamley and Gale (1994) investigate a discrete time

investment model which assumes the timing of decisions is endogenous, that is,

individuals try to find the best place in the decision-making queue. In their

model, there are only two types of individuals: those with investment options

and those without. Those individuals without investment options are assumed to

be passive. In contrast, in our model we allow for a finite or an infinite number

of types of individuals. Given one’s own signals, each individual decides whether

to act (exercising a risky investment option A or a safe investment option B)

immediately or to wait and learn the true value of the risky investment option A

by observing other individuals’ actions.

The rest of the paper is organized as follows. Section 2.2 provides the setup

of a general model and shows the existence of a symmetric equilibrium with the

monotonicity property. Then we characterize herd behavior under exogenous

ordering and endogenous ordering and discuss our main results. Section 2.3

concludes.
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2.2 The General Model

In this section, we first provide the basic setup of our general model. Then we

characterize herd behavior under exogenous ordering and endogenous ordering.

2.2.1 Basic Setup

There are N individuals. All are rational and risk neutral. There are two in-

vestment options: a risky investment option A and a safe investment option B.

Assume that the true value of A, denoted by V A, is chosen by nature at the

beginning of the game, and is unknown to the individuals. Individuals only know

V A follows some prior distribution F0(V
A), with density f0(V

A). The value of

B, denoted by V B, is known to the individuals. To emphasize the information

aspect, we concentrate on pure information externalities: each individual’s payoff

only depends on his own action and the state of nature.

We focus on the case that both exercising A and exercising B are irreversible

binary choices.5 The indivisibility of the action space is important. As in Banerjee

(1992), since the choices made by individuals are not sufficient statistics for the

information they have, the error prone herding can occur.6

At the beginning of the game, individual i in the market freely observes some

conditionally independent private signal µi ∈ [µ, µ], which follows some distri-

bution F (µi|V A), with density f(µi|V A). Assume individuals are more likely to

5There exists extremely high “disruption costs” involved in upgrading. In other words,
we could see these exercising as a perpetual American call option as in Grenadier (1999). In
Grenadier (1999), decisions are made in continuous time and there is a state variable, which
follows some exogenous continuous time stochastic process. In this paper, we assume discrete
time decision and no exogenous state variable.

6Banerjee (1992) assumes a continuous action space and gets similar herding results as BHW.
This is due to the degenerate payoff function as pointed out by BHW. Park (2001) assumes
perfect observability. Therefore, in his model players share the same information and hidden
information is not an issue.
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get a higher private signal (indicating higher value of A) if the underlying V A is

higher.

Assumption 1: F (µi|V A) satisfies the Monotone Likelihood Ratio Property

(MLRP) with respect to V A, i.e.

f(µi|V A
1 )

f(µi|V A
2 )

increasing in µi ∀V A
1 > V A

2

If individual i exercises A, B, or waits in period t, then in the following

periods, everyone knows individual i’s action in period t. The public information

available at the beginning of period t is denoted by ht, which includes the prior

information of V A, actions and the equilibrium strategy profile of all individuals

before t. If an individual does not exercise both A and B, he gets reservation

utility V 0, normalized to zero. The common discount factor is δ. Here, we assume

V B > V 0 = 0.7

2.2.2 Herd Behavior with Exogenous Ordering

If we assume the ordering of individuals is exogenous, in which only one individual

moves in each period in an exogenously given order, then there are no strategic

interactions among individuals. When it is one’s turn to make a decision, he

decides to exercise A or B given the current public information and his own

private signal.8

The equilibrium decision rule is a sequence of critical values

{µ∗t (ht)}t

7Otherwise, if V B ≤ V 0 = 0, no one will choose B. We are back to the situation of one-sided
commitment. See the companion paper Zhang (2007a) for details.

8Since V B > V 0 = 0, no one will choose waiting given their decisions are once and for all.
Therefore, for exogenous ordering, two-sided commitment is equivalent to one-sided commit-
ment (Zhang 2007a).
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such that the individual making the decision in period t exercises A if his private

signal µt > µ∗t (ht); otherwise, he exercises B.9 We can see this sequence of critical

values is not monotone. If the individual in period t exercises A, which indicates

µt > µ∗t (ht), this is “good” news for the individual in period t+1. Thus, in period

t + 1, µ∗t+1(ht+1) ≤ µ∗t (ht). Conversely, if the individual in period t exercises B,

µ∗t+1(ht+1) ≥ µ∗t (ht).

The game is in the strategic phase when the sequence of critical values {µ∗t (ht)}t

fluctuates in between µ and µ. In the strategic phase, each individual’s decision

depends on both the current public information and his own private signal.

Once the sequence of critical values {µ∗t (ht)}t “breaks” either one of the

boundaries, herding occurs. A herding phase starts in period τ if µ∗τ (hτ ) = µ.

The individual in period τ will exercise A regardless of his own private signal.

His decision is, therefore, uninformative to others. Thus, µ∗t (ht) = µ∗t−1(ht−1) = µ

∀t > τ (see figure 2.1). All the following individuals will exercise A.

*( )
t t
h

t

A Herding Phase Strategic Phase 

N

Figure 2.1: A herding with exogenous ordering

Similarly, B herding phase starts in period τ if µ∗τ (hτ ) = µ. All the following

9For notation simplicity, we assume the following tie-breaking rule: if an individual i is
indifferent between exercising A and B, he exercises B whenever µi ∈ (µ, µ] and exercises A

whenever µi = µ.
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individuals will exercise B and µ∗t (ht) = µ∗t−1(ht−1) = µ ∀t > τ (see figure 2.2).

*( )
t t
h

t

B Herding Phase Strategic Phase 

N

Figure 2.2: B herding with exogenous ordering

Since public information disclosed only needs to offset the information from

the last individual’s action before the herding phase starts, both A herding and

B herding are not robust to the public disclosure of information. If in a certain

period N ≥ t ≥ τ there is some public information disclosed such that µ <

µ∗t (ht) < µ, then the strategic phase starts again.

2.2.3 Herd Behavior with Endogenous Ordering

If we allow individuals to choose the time of acting (exercising A or B) or waiting,

there exist strategic interactions among individuals.

The timing of endogenous ordering is as follows:

In period 1, each individual decides whether or not to exercise A or

B. If he does not exercise A or B in period 1, he gets reservation

utility V 0 = 0 and has the option of exercising A or B later.

In period 2, all the remaining individuals decide to exercise A, B or

to wait after observing others’ actions in period 1.
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The subsequent periods are the same as period 2. The game continues

until everyone exercises A or B. The time period is denoted by t,

t = 1, 2, 3, ....

The benefit from waiting is the information revealed about A by other indi-

viduals. The cost of waiting is the difference between the gain from A or B and

the reservation utility.

We first investigate the relationship between the incentive to wait and private

information. We prove any possible symmetric equilibrium must be monotone

with respect to personal private signals. Then, we show the existence and describe

characteristics of a symmetric equilibrium with the monotonicity property by

backward induction in two cases: a continuous private signal space and a finite

discrete private signal space.10

2.2.3.1 Information and Incentives

The following remark shows that if an individual gets a higher private signal,

given the same history, he believes that V A will be higher, i.e., the posterior

distribution of V A satisfies MLRP with respect to private signals.

Remark 2.1

f(V A|µi, ht)

f(V A|µ′i, ht)
increasing in V A ∀µi > µ′i

Proof. See the Appendix in the companion paper (Zhang 2007a).

The benefit from exercising A in period t for individual i is:

UA(µi; ht) = EV A|µi;ht
V A (2.1)

10Since the information disclosed through the backward induction construction process may
not be monotone, the equilibrium is not necessarily unique.
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The benefit from exercising B is known and constant in any period:

UB = V B

The benefit from waiting in period t for individual i is:

UW (µi; ht; s−i,t) = δEHt+1(µi;ht;s−i,t)[max{UA(µi; ht+1); U
W (µi; ht+1; s−i,t+1); U

B}]
(2.2)

where s−i,t represents the strategy profile of all other individuals except for indi-

vidual i starting from period t; Ht+1(µi; ht; s−i,t) represents the set of histories at

the beginning of period t + 1 given µi, ht and s−i,t. From the above equation, we

can solve the benefit from waiting forever UW = 0. Consequently, we have the

following lemma.

Lemma 2.1 Since the benefit from waiting forever UW = 0 and V B > 0, indi-

viduals will never choose waiting forever. They will choose to either exercise A

or B in a finite number of periods. Since both exercising A and B are irreversible

binary choices, that is to say, the game ends in a finite number of periods.

In this paper, we focus on the symmetric equilibrium. The next proposition

proves that for any possible symmetric equilibrium, it must be monotone with

respect to personal private signals. That is, individuals with private signals

indicating higher value of A have a higher incentive to exercise A than to wait or

to exercise B; individuals with private signals indicating higher value of A have

a higher incentive to wait than to exercise B.

Proposition 2.1

(i) UA(µi; ht)− UB increasing in µi ∀ht

(ii) UW (µi; ht; s−i,t)− UB increasing in µi ∀ht; s−i,t

(iii) UA(µi; ht)− UW (µi; ht; s−i,t) increasing in µi ∀ht; s−i,t
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Proof. See the Appendix.

2.2.3.2 Symmetric Equilibrium with the Monotonicity Property

Proposition 2.2 There exists a symmetric equilibrium with the following mono-

tonicity property.

(i) Case I: Continuous private signal space

The equilibrium strategy profile is a sequence of decreasing critical values

{µA
t (ht)}t and a sequence of increasing critical values {µB

t (ht)}t. In period

t with history ht, individuals with µ > µA
t (ht) exercise A; individuals with

µ < µB
t (ht) exercise B;others wait.

Case II: Finite discrete private signal space

The equilibrium strategy profile is a sequence of decreasing critical values

{µA
t (ht)}t and a sequence of increasing critical values {µB

t (ht)}t, with two

sequences of probability {pµA
t (ht)}t and {pµB

t (ht)}t. In period t with history

ht, individuals with µ > µA
t (ht) exercise A; individuals with µ < µB

t (ht)

exercise B; the critical type individuals with µ = µA
t (ht) exercise A with

probability pµA
t (ht); the critical type individuals with µ = µB

t (ht) exercise B

with probability pµB
t (ht); others wait.11

(ii) Large Number and Patient Individuals: If number of individuals is

large and individuals are patient enough, at any fixed time, nearly all indi-

viduals wait due to the negligible information disclosed.

Proof. See the Appendix.

11For simplicity, pµA
t (ht) < 1 and pµB

t (ht) < 1 are chosen in the construction process so that
there is the possibility for the µA

t (ht) and µB
t (ht) types of individuals to remain in the game in

period t + 1. Moreover, µA
t (ht) is the highest type in period t + 1; µB

t (ht) is the lowest type in
period t + 1.
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Part (i) is from the construction in the above proposition. For part (ii), if the

number of individuals is large and µA
1 (h1) strictly smaller than µ (finite discrete

private signal space: pµA strictly greater than 0), by the Law of Large Numbers,

the true value of the risky investment option A will be (approximately) revealed

in the second period. Similarly, if the number of individuals is large and µB
1 (h1)

strictly greater than µ (finite discrete private signal space: pµB strictly greater

than 0), by the Law of Large Numbers, the true value of the risky investment

option A will be (approximately) revealed in the second period. In this case, if

individuals are patient enough, then all individuals will wait in period 1 such that

µA
1 (h1) = µ and µB

1 (h1) = µ (finite discrete private signal space: pµA = 0 and

pµB = 0). This is a contradiction. Thus, if the number of individuals is large and

individuals are patient enough, in any period∞ > t > 1, the game is “almost” the

same as the period 1 game: either µA
t (ht) = µA

t−1(ht−1) or µA
t (ht) ≈ µA

t−1(ht−1)

(finite discrete private signal space: either pµA = 0 or pµA ≈ 0); and either

µB
t (ht) = µB

t−1(ht−1) or µB
t (ht) ≈ µB

t−1(ht−1) (finite discrete private signal space:

either pµB = 0 or pµB ≈ 0). Thus, at any fixed time, there is a negligible

proportion of individuals exercising A or B and so is the information disclosed.

From the above proposition, with endogenous ordering the sequences of crit-

ical values are monotone. Intuitively, in any period t, all the individuals with

µ > µA
t (ht−1) exercise A and all the individuals with µ < µB

t (ht−1) exercise

B before t. In period t, we only need to consider the individuals with pri-

vate signals between µB
t (ht−1) and µA

t−1(ht−1). Thus, µA
t (ht) ≤ µA

t−1(ht−1) and

µB
t (ht) ≥ µB

t−1(ht−1).

A herding occurs in period τ when µA
τ (hτ ) = µB

τ−1(hτ−1) (finite discrete signal

space: µA
τ (hτ ) = µB

τ−1(hτ−1); pµA
τ (hτ ) = 1). All the remaining individuals exercise

A in period τ regardless of their own private signal, and then the game ends
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(see figure 2.3). B herding occurs in period τ when µB
τ (hτ ) = µA

τ−1(hτ−1) (finite

( )

( )

A

t t

B

t t

h

h

t

A Herding Phase 

Strategic Phase 

Figure 2.3: A herding with endogenous ordering

discrete signal space: µB
τ (hτ ) = µA

τ−1(hτ−1); pµB
τ (hτ ) = 1). All the remaining

individuals exercise B in period τ regardless of their own private signal, and then

the game ends (see figure 2.4).

If the game falls into either A herding phase or B herding phase, disclosure

of public information after τ will not have any effect since A herding phase or

B herding phase only lasts one period. Therefore, both A herding phase and B

herding phase are robust to the future public disclosure of information.
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( )
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t t
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t t
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Strategic Phase 

Figure 2.4: B herding with endogenous ordering
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2.2.4 Robustness

We summarize the results of the impact of public information disclosure on herd-

ing behavior under exogenous and endogenous ordering settings respectively in

the following table.12

Table 2.1: Robustness with respect to Disclosure of Public Information

exogenous ordering endogenous ordering

A herding B herding A herding B herding

time of disclosure N ≥ t > τ Not Robust Not Robust Robust Robust

of public information t > N Robust Robust Robust Robust

By the game construction, under the exogenous ordering setting, the game

lasts exactly N periods. Disclosure of public information after period N will not

have any effect. Under the endogenous ordering setting, both A herding phase

and B herding phase only last one period. Disclosure of public information after

τ will not have any effect.

2.2.5 Expected Number of Correct Choices

Proposition 2.3 In the general model, if the number of individuals is large and

individuals are patient enough, exogenous ordering is more efficient than endoge-

nous ordering in terms of inducing a larger expected number of correct choices, if

individuals can be forced to move with an exogenous order.

Proof. From proposition 2.2, with endogenous ordering, if the number of in-

12Here, we only talk about the unexpected disclosure of public information. The companion
paper Zhang (2007a) investigates more variations of public information disclosure.
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dividuals is large and individuals are patient enough, at any fixed time, nearly

all individuals wait due to the negligible information disclosed. In contrast, in

the self-decision case, each individual still utilizes his own private information

and the prior probabilities. Exogenous ordering is even better since it tends to

aggregate more information by forcing some of the individuals to make decisions

in some given periods.If individuals are patient enough, as long as the private sig-

nals and the prior probabilities are informative, exogenous ordering is more likely

to induce a larger expected number of correct choices than endogenous ordering.

2.3 Conclusion

In this paper, we investigate herd behavior of sequential decisions under imperfect

information with two-sided commitment. We provide a framework of endogenous

ordering to allow decision makers to choose the time of acting (exercising a risky

investment option A or a safe investment option B) or waiting. We show the

existence and characteristics of the equilibrium. We find that herd behavior un-

der endogenous ordering is not necessarily less error prone than herd behavior

under exogenous ordering due to the free-rider problem. In particular, if the num-

ber of individuals is large and individuals are patient enough, under endogenous

ordering nearly all individuals are willing to wait and free-ride on others. Con-

sequently, nearly all individuals wait due to the negligible information disclosed.

In this case, if decision makers can be forced to move with an exogenous order,

the resulting equilibrium is more efficient because exogenous ordering tends to

aggregate more information. That is to say, more “freedom” may not be better.

Another feature of the endogenous ordering framework is that in a herding

phase, all the remaining individuals either act (exercising a risky investment
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option A or a safe investment option B) immediately regardless of their own

private signals. Thus, there exists an investment surge (either A or B) when

herding starts. Compared with the exogenous ordering setting, disclosure of

public information has a completely different impact on the strategic and herding

behavior of individuals. In particular, if the game is in A herding phase or B

herding phase, all the remaining individuals exercising either A or B immediately

and the game ends in one period. Further disclosure of public information will

not have any effect.

2.4 Appendix

Proof of Proposition 2.1

(i) By Remark 1, f(V A|µ, ht) satisfies MLRP with respect to µ. According to

Landsberger and Meilijson (1990), F (V A|µi, ht) first order stochastic dominates

(FOSD) F (V A|µ′i, ht) for any µi > µ′i. So, UA(µi; ht) ≥ UA(µ′i; ht) for any ht and

µi > µ′i. Since UB is a constant, we have UA(µi; ht)− UB increasing in µi, ∀ht.

(ii) Let us check the benefit of waiting for individual i who has a private

signal µi. The set of histories Ht+1(µi; ht; s−i,t) can be decomposed into three

disjoint sets: HA
t+1(µi; ht; s−i,t), HW

t+1(µi; ht; s−i,t) and HB
t+1(µi; ht; s−i,t), where

HA
t+1(µi; ht; s−i,t) is the set of histories in period t + 1 in which individual i will

exercise A according to some strategy si of individual i; HW
t+1(µi; ht; s−i,t) is the set

of histories in period t+1 in which individual i will wait according to some strategy

si of individual i; and HB
t+1(µi; ht; s−i,t) is the set of histories in period t + 1 in
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which individual i will exercise B according to some strategy si of individual i.

UW (µi;ht; s−i,t) = δEHt+1(µi;ht;s−i,t)[max{UA(µi; ht+1);UW (µi; ht+1; s−i,t+1)}; UB]

= δ[EHA
t+1(µi;ht;s−i,t)

UA(µi; ht+1) + EHW
t+1(µi;ht;s−i,t)

UW (µi;ht+1; s−i,t+1) + EHB
t+1(µi;ht;s−i,t)

UB]

(2.3)

Similarly, the benefit of waiting for individual i who has a lower private signal

µ′i < µi is as following

UW (µ′i;ht; s−i,t) = δEHt+1(µ′i;ht;s−i,t)[max{UA(µ′i; ht+1);UW (µ′i; ht+1; s−i,t+1)}; UB]

= δ[EHA
t+1(µ

′
i;ht;s−i,t)

UA(µ′i; ht+1) + EHW
t+1(µ

′
i;ht;s−i,t)

UW (µ′i;ht+1; s−i,t+1) + EHB
t+1(µ

′
i;ht;s−i,t)

UB]

(2.4)

By Lemma 2.1, the game ends in a finite number of periods. Suppose the

game ends in period T . No more new information is disclosed after period T ,

which means UW (µi; ht; s−i,t) = UW (µ′i; ht; s−i,t) = 0 ∀t > T .

Using mathematical induction, suppose UW (µi; ht+1; s−i,t+1) ≥ UW (µ′i; ht+1; s−i,t+1)

for some t. We need to prove UW (µi; ht; s−i,t) ≥ UW (µ′i; ht; s−i,t). By equation

2.3 and 2.4,

UW (µi;ht; s−i,t) = δ[EHA
t+1(µi;ht;s−i,t)∩HA

t+1(µ
′
i;ht;s−i,t)

UA(µi;ht+1)

+ EHA
t+1(µi;ht;s−i,t)∩HW

t+1(µ
′
i;ht;s−i,t)

UA(µi; ht+1)

+ EHA
t+1(µi;ht;s−i,t)∩HB

t+1(µ
′
i;ht;s−i,t)

UA(µi; ht+1)

+ EHW
t+1(µi;ht;s−i,t)∩HA

t+1(µ
′
i;ht;s−i,t)

UW (µi; ht+1; s−i,t+1)

+ EHW
t+1(µi;ht;s−i,t)∩HW

t+1(µ
′
i;ht;s−i,t)

UW (µi; ht+1; s−i,t+1)

+ EHW
t+1(µi;ht;s−i,t)∩HB

t+1(µ
′
i;ht;s−i,t)

UW (µi; ht+1; s−i,t+1)

+ EHB
t+1(µi;ht;s−i,t)∩HA

t+1(µ
′
i;ht;s−i,t)

UB

+ EHB
t+1(µi;ht;s−i,t)∩HW

t+1(µ
′
i;ht;s−i,t)

UB

+ EHB
t+1(µi;ht;s−i,t)∩HB

t+1(µ
′
i;ht;s−i,t)

UB]
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UW (µ′i;ht; s−i,t) = δ[EHA
t+1(µi;ht;s−i,t)∩HA

t+1(µ
′
i;ht;s−i,t)

UA(µ′i; ht+1)

+ EHA
t+1(µi;ht;s−i,t)∩HW

t+1(µ
′
i;ht;s−i,t)

UW (µ′i;ht+1; s−i,t+1)

+ EHA
t+1(µi;ht;s−i,t)∩HB

t+1(µ
′
i;ht;s−i,t)

UB

+ EHW
t+1(µi;ht;s−i,t)∩HA

t+1(µ
′
i;ht;s−i,t)

UA(µ′i; ht+1)

+ EHW
t+1(µi;ht;s−i,t)∩HW

t+1(µ
′
i;ht;s−i,t)

UW (µ′i;ht+1; s−i,t+1)

+ EHW
t+1(µi;ht;s−i,t)∩HB

t+1(µ
′
i;ht;s−i,t)

UB

+ EHB
t+1(µi;ht;s−i,t)∩HA

t+1(µ
′
i;ht;s−i,t)

UA(µ′i; ht+1)

+ EHB
t+1(µi;ht;s−i,t)∩HW

t+1(µ
′
i;ht;s−i,t)

UW (µ′i;ht+1; s−i,t+1)

+ EHB
t+1(µi;ht;s−i,t)∩HB

t+1(µ
′
i;ht;s−i,t)

UB]

Let us discuss the cases of joint history sets one by one.

For ht+1 ∈ [HA
t+1(µi; ht; s−i,t) ∩HA

t+1(µ
′
i; ht; s−i,t)],

UA(µi; ht+1) ≥ UA(µ′i; ht+1)

For ht+1 ∈ [HA
t+1(µi; ht; s−i,t) ∩HW

t+1(µ
′
i; ht; s−i,t)],

UA(µi; ht+1) ≥ UW (µi; ht+1; s−i,t+1) ≥ UW (µ′i;ht+1; s−i,t+1)

For ht+1 ∈ [HA
t+1(µi; ht; s−i,t) ∩HB

t+1(µ
′
i; ht; s−i,t)],

UA(µi; ht+1) ≥ UB

For ht+1 ∈ [HW
t+1(µi; ht; s−i,t) ∩HA

t+1(µ
′
i; ht; s−i,t)],

UW (µi; ht+1) ≥ UA(µi; ht+1) ≥ UA(µ′i;ht+1)

For ht+1 ∈ [HW
t+1(µi; ht; s−i,t) ∩HW

t+1(µ
′
i; ht; s−i,t)],

UW (µi; ht+1; s−i,t+1) ≥ UW (µ′i; ht+1; s−i,t+1)

For ht+1 ∈ [HW
t+1(µi; ht; s−i,t) ∩HB

t+1(µ
′
i; ht; s−i,t)],

UW (µi;ht+1) ≥ UB
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For ht+1 ∈ [HB
t+1(µi; ht; s−i,t) ∩HA

t+1(µ
′
i; ht; s−i,t)], since

UB ≥ UA(µi; ht+1) ≥ UA(µ′i; ht+1)

HB
t+1(µi; ht; s−i,t) ∩HA

t+1(µ
′
i; ht; s−i,t) is an empty set.

For ht+1 ∈ [HB
t+1(µi; ht; s−i,t) ∩HW

t+1(µ
′
i;ht; s−i,t)], since

UB ≥ UW (µi; ht+1; s−i,t+1) ≥ UW (µ′i;ht+1; s−i,t+1)

HB
t+1(µi; ht; s−i,t) ∩HW

t+1(µ
′
i; ht; s−i,t) is an empty set.

For ht+1 ∈ [HB
t+1(µi; ht; s−i,t) ∩HB

t+1(µ
′
i;ht; s−i,t)],

UB ≥ UB

Thus, for all joint history sets, the arguments from UW (µi; ht; s−i,t) is greater

than or equal to those from UW (µ′i; ht; s−i,t). Thus, UW (µi; ht; s−i,t) ≥ UW (µ′i; ht; s−i,t)

for any t. Since UB is a constant, we have

UW (µi; ht; s−i,t)− UB increasing in µi ∀ht; s−i,t

(iii) By the Martingale property,

UA(µi; ht) = EHA
t+1(µi;ht;s−i,t)U

A(µi; ht+1) + EHW
t+1(µi;ht;s−i,t)U

A(µi; ht+1)

+ EHB
t+1(µi;ht;s−i,t)U

A(µi; ht+1)

By equation 2.3 and 2.4, for any non-negative integer j

UA(µi; ht)− δjUW (µi; ht; s−i,t) = (1− δj+1)EHA
t+1(µi;ht;s−i,t)U

A(µi; ht+1)

+ EHW
t+1(µi;ht;s−i,t)[U

A(µi; ht+1)− δj+1UW (µi; ht+1; s−i,t+1)]

+ EHB
t+1(µi;ht;s−i,t)[U

A(µi; ht+1)− δj+1UB]

(2.5)

UA(µ′i; ht)− δjUW (µ′i; ht; s−i,t) = (1− δj+1)EHA
t+1(µ

′
i;ht;s−i,t)U

A(µ′i; ht+1)

+ EHW
t+1(µ

′
i;ht;s−i,t)[U

A(µ′i; ht+1)− δj+1UW (µ′i; ht+1; s−i,t+1)]

+ EHB
t+1(µ

′
i;ht;s−i,t)[U

A(µ′i; ht+1)− δj+1UB]

(2.6)
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By Lemma 2.1, the game ends in a finite number of periods. Suppose the

game ends in period T . No more new information is disclosed after period T ,

which means UW (µi; ht; s−i,t) = UW (µ′i; ht; s−i,t) = 0 ∀t > T . Thus, UA(µi; ht)−
δjUW (µi; ht; s−i,t) ≥ UA(µ′i; ht)− δjUW (µ′i; ht; s−i,t) ∀t > T .

Using mathematical induction, suppose UA(µi; ht+1)−δjUW (µi; ht+1; s−i,t+1) ≥
UA(µ′i; ht+1)− δjUW (µ′i; ht+1; s−i,t+1) for some t. We need to prove UA(µi; ht)−
δjUW (µi; ht; s−i,t) ≥ UA(µ′i; ht)− δjUW (µ′i; ht; s−i,t). By equation 2.5 and 2.6,

UA(µi; ht)− δjUW (µi;ht; s−i,t) = (1− δj+1)[EHA
t+1(µi;ht;s−i,t)∩HA

t+1(µ
′
i;ht;s−i,t)U

A(µi;ht+1)

+ EHA
t+1(µi;ht;s−i,t)∩HW

t+1(µ
′
i;ht;s−i,t)U

A(µi; ht+1) + EHA
t+1(µi;ht;s−i,t)∩HB

t+1(µ
′
i;ht;s−i,t)U

A(µi; ht+1)]

+ EHW
t+1(µi;ht;s−i,t)∩HA

t+1(µ
′
i;ht;s−i,t)[U

A(µi;ht+1)− δj+1UW (µi; ht+1; s−i,t+1)]

+ EHW
t+1(µi;ht;s−i,t)∩HW

t+1(µ
′
i;ht;s−i,t)[U

A(µi;ht+1)− δj+1UW (µi; ht+1; s−i,t+1)]

+ EHW
t+1(µi;ht;s−i,t)∩HB

t+1(µ
′
i;ht;s−i,t)[U

A(µi;ht+1)− δj+1UW (µi; ht+1; s−i,t+1)]

+ EHB
t+1(µi;ht;s−i,t)∩HA

t+1(µ
′
i;ht;s−i,t)[U

A(µi;ht+1)− δj+1UB ]

+ EHB
t+1(µi;ht;s−i,t)∩HW

t+1(µ
′
i;ht;s−i,t)[U

A(µi;ht+1)− δj+1UB ]

+ EHB
t+1(µi;ht;s−i,t)∩HB

t+1(µ
′
i;ht;s−i,t)[U

A(µi;ht+1)− δj+1UB ]

UA(µ′i;ht)− δjUW (µ′i; ht; s−i,t) = (1− δj+1)EHA
t+1(µi;ht;s−i,t)∩HA

t+1(µ
′
i;ht;s−i,t)U

A(µ′i; ht+1)

+ EHA
t+1(µi;ht;s−i,t)∩HW

t+1(µ
′
i;ht;s−i,t)[U

A(µ′i; ht+1)− δj+1UW (µ′i;ht+1; s−i,t+1)]

+ EHA
t+1(µi;ht;s−i,t)∩HB

t+1(µ
′
i;ht;s−i,t)[U

A(µ′i; ht+1)− δj+1UB ]

+ (1− δj+1)EHW
t+1(µi;ht;s−i,t)∩HA

t+1(µ
′
i;ht;s−i,t)U

A(µ′i; ht+1)

+ EHW
t+1(µi;ht;s−i,t)∩HW

t+1(µ
′
i;ht;s−i,t)[U

A(µ′i; ht+1)− δj+1UW (µ′i;ht+1; s−i,t+1)]

+ EHW
t+1(µi;ht;s−i,t)∩HB

t+1(µ
′
i;ht;s−i,t)[U

A(µi; ht+1)− δj+1UB ]

+ (1− δj+1)EHB
t+1(µi;ht;s−i,t)∩HA

t+1(µ
′
i;ht;s−i,t)U

A(µ′i; ht+1)

+ EHB
t+1(µi;ht;s−i,t)∩HW

t+1(µ
′
i;ht;s−i,t)[U

A(µ′i; ht+1)− δj+1UW (µ′i;ht+1; s−i,t+1)]

+ EHB
t+1(µi;ht;s−i,t)∩HB

t+1(µ
′
i;ht;s−i,t)[U

A(µ′i; ht+1)− δj+1UB ]

Let us discuss the cases of joint history sets one by one.

For ht+1 ∈ [HA
t+1(µi; ht; s−i,t) ∩HA

t+1(µ
′
i; ht; s−i,t)],

(1− δj+1)UA(µi; ht+1) ≥ (1− δj+1)UA(µ′i; ht+1)
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For ht+1 ∈ [HA
t+1(µi; ht; s−i,t)∩HW

t+1(µ
′
i; ht; s−i,t)], since UW (µ′i; ht+1; s−i,t+1) ≥ UA(µ′i; ht+1),

(1−δj+1)UA(µi; ht+1) ≥ (1−δj+1)UA(µ′i; ht+1) ≥ UA(µ′i;ht+1)−δj+1UW (µ′i; ht+1; s−i,t+1)

For ht+1 ∈ [HA
t+1(µi; ht; s−i,t) ∩HB

t+1(µ
′
i; ht; s−i,t)], since UB ≥ UA(µ′i; ht+1),

(1− δj+1)UA(µi;ht+1) ≥ (1− δj+1)UA(µ′i; ht+1) ≥ UA(µ′i; ht+1)− δj+1UB

For ht+1 ∈ [HW
t+1(µi; ht; s−i,t)∩HA

t+1(µ
′
i; ht; s−i,t)], since UA(µ′i;ht+1) ≥ UW (µ′i; ht+1; s−i,t+1),

UA(µi; ht+1)− δj+1UW (µi; ht+1; s−i,t+1) ≥ UA(µ′i; ht+1)− δj+1UW (µ′i; ht+1; s−i,t+1)

≥ (1− δj+1)UA(µ′i; ht+1)

For ht+1 ∈ [HW
t+1(µi; ht; s−i,t) ∩HW

t+1(µ
′
i; ht; s−i,t)],

UA(µi; ht+1)− δj+1UW (µi; ht+1; s−i,t+1) ≥ UA(µ′i; ht+1)− δj+1UW (µ′i; ht+1; s−i,t+1)

For ht+1 ∈ [HW
t+1(µi; ht; s−i,t) ∩HB

t+1(µ
′
i; ht; s−i,t)], since UB ≥ UW (µ′i; ht+1; s−i,t+1),

UA(µi; ht+1)− δj+1UW (µi; ht+1; s−i,t+1) ≥ UA(µ′i; ht+1)− δj+1UW (µ′i; ht+1; s−i,t+1)

≥ UA(µ′i; ht+1)− δj+1UB

For ht+1 ∈ [HB
t+1(µi; ht; s−i,t) ∩HA

t+1(µ
′
i; ht; s−i,t)], since

UB ≥ UA(µi; ht+1) ≥ UA(µ′i; ht+1)

HB
t+1(µi; ht; s−i,t) ∩HA

t+1(µ
′
i; ht; s−i,t) is an empty set.

For ht+1 ∈ [HB
t+1(µi; ht; s−i,t) ∩HW

t+1(µ
′
i;ht; s−i,t)], since

UB ≥ UW (µi; ht+1; s−i,t+1) ≥ UW (µ′i;ht+1; s−i,t+1)

HB
t+1(µi; ht; s−i,t) ∩HW

t+1(µ
′
i; ht; s−i,t) is an empty set.

For ht+1 ∈ [HB
t+1(µi; ht; s−i,t) ∩HB

t+1(µ
′
i;ht; s−i,t)],

UA(µi; ht+1)− δj+1UB ≥ UA(µ′i; ht+1)− δj+1UB

Thus, for all joint history sets, the arguments from UA(µi; ht)−δjUW (µi; ht; s−i,t)

is greater than or equal to those from UA(µ′i; ht) − δjUW (µ′i; ht; s−i,t). Thus,

UA(µi; ht) − δjUW (µi; ht; s−i,t) ≥ UA(µ′i; ht) − δjUW (µ′i; ht; s−i,t) for any t. Let

j = 0, we have UA(µi; ht)− UW (µi; ht; s−i,t) increasing in µi, ∀ht; s−i,t.
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Proof of Proposition 2.2

(i) Case I: Continuous private signal space

Let Gn(ht) represent the subgame starting from period t with history ht, where

n is the number of individuals remaining in this subgame.13 Use backward in-

duction.

Step 1 Start from the subgame with only one individual, G1(ht). We can find

a critical value µ∗t (ht) which is the solution of UA(µ∗t (ht); ht) = UB. In

this case, µ∗t (ht) = µA
t (ht) = µB

t (ht). If the individual’s private signal

µ > µ∗t (ht), he will exercise A; otherwise, he exercises B.

Step 2 Now consider the subgame with two individuals G2(ht). By Lemma 2.1,

this subgame ends in a finite number of periods, which means in some

period, say T , µA
T (hT ) = µB

T (hT ). This subgame could have been end or

evolved to a subgame with only one individual in some period t ≤ s < T ,

depending on the realization of private signals of these two individuals.

Thus, to find the pair of critical values {µA
t (ht), µ

B
t (ht)} in period t, we

must construct the entire scheme of pairs of critical values from period t to

T ,{µA
s (hs), µ

B
s (hs)}T

s=t, with µA
T (hT ) = µB

T (hT ).

Using backward induction, start with any arbitrary µA
T (hT ) = µB

T (hT ). Cer-

tainly, it must lie in between {µA
t−1(ht−1), µ

B
t−1(ht−1)}. Since T is the last

period, we have

UA(µA
T (hT ); hT ) = UB ≥ UW (µA

T (hT ); hT ; s−i,T )

hT is the history till period T , including ht, 2 individuals remaining in the

game, and their private signals are in between {µA
T−1(hT−1), µ

B
T−1(ht−1)}.

13n must be compatible with ht.
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s−i,T is the strategy profile of the opponent, in which the opponent will

exercise A if his private signal is greater than µA
T (hT ), otherwise exercise

B. We have one equation, one inequality, and only 2 unknowns µA
T−1(hT−1)

and µB
T−1(Tt−1). Thus, we can solve the range of {µA

T−1(hT−1), µ
B
T−1(ht−1)},

in which the game ends in period T with µA
T (hT ) = µB

T (hT ).

Then back to period T − 1, we have the following equations.

UA(µA
T−1(hT−1); hT−1) = UW (µA

T−1(hT−1); hT−1; s−i,T−1)

UB = UW (µB
T−1(hT−1); hT−1; s−i,T−1)

Similarly, we can solve the range of {µA
T−2(hT−2), µ

B
T−2(ht−2)}, in which the

game in period T−1 with the pair of critical values {µA
T−1(hT−1), µ

B
T−1(ht−1)}.

Backward till {µA
t−1(ht−1), µ

B
t−1(ht−1)} is in the range of pair of critical values

such that the game ends in period T with µA
T (hT ) = µB

T (hT ). In this process,

we might try different values of µA
T (hT ) = µB

T (hT ).

...

...

Step N Continue to the subgame with N individuals GN(ht). Similarly as previ-

ous steps, start with any arbitrary µA
T (hT ) = µB

T (hT ) to construct the entire

scheme of of pairs of critical values from period t to T ,{µA
s (hs), µ

B
s (hs)}T

s=t,

with µA
T (hT ) = µB

T (hT ). Try different values of µA
T (hT ) = µB

T (hT ) till

{µA
t−1(ht−1), µ

B
t−1(ht−1)} is in the range of pair of critical values such that

the game ends in period T with µA
T (hT ) = µB

T (hT ).

We can see in the final Step N if we replace ht with h1 then GN(ht) is the

original game.

Case II: Finite discrete private signal space
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Denote the private signal space by {µ1, µ2, . . . , µK}, where µ1 < µ2 < . . . <

µK . The strategy profile starting from period t, st = {Pτ}∞τ=t, where Pτ =

{pµA
k ,τ , pµB

k ,τ}K
k=1 and pµA

k ,τ , pµB
k ,τ represents the probability of type µk exercising

A and B in period τ . For µi, UA(µi; ht)− UW (µi; ht; {Pτ}∞τ=t), UA(µi; ht)− UB,

and UW (µi; ht; {Pτ}∞τ=t)−UB are continuous in pµk,τ ∀µk, τ . Let GM(ht) represent

the subgame starting from period t with history ht, where M is the set of possible

types remaining in this subgame.14

By Proposition 2.1, with a finite number of individuals and a finite number

of individual types, backward induction can be used to construct the symmetric

equilibrium through the following steps.

Step 1 Start from the subgame G{µ1}(ht) with only one type of individual µ1.

That is, M = {µ1}. Since all the information is disclosed,

UW (µ1; ht; {pµA
1 ,t, pµB

1 ,t}) = UW = 0

There are three possible cases:

1.1 If UA(µ1; ht) < UB, {pµB
1 ,t = 1} is the equilibrium and game ends.

1.2 If UA(µ1; ht) = UB, individuals are indifferent in between exercising A

and B. By some tie-breaking rule, individuals will exercise A or B in

period t and game ends.

1.3 If UA(µ1; ht) > UB, {pµA
1 ,t = 1} is the equilibrium and game ends.

Step 2 Now consider the subgame G{µ1,µ2}(ht) with two possible types of indi-

viduals µ1, µ2. Thus, M = {µ1, µ2}. There are three possible cases:

2.1 If UB ≥ UA(µ2; ht) ≥ UA(µ1; ht), then {pµB
1 ,t = pµB

2 ,t = 1, pµA
1 ,t =

pµA
2 ,t = 0} is an equilibrium strategy profile in period t.

14M must be compatible with ht.
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2.2 If UA(µ2; ht) > UB ≥ UA(µ1; ht), then for the equilibrium strategy

profile in period t, pµA
1 ,t = pµB

2 ,t = 0. Consider the strategy profile in

period t: {pµB
1 ,t, pµA

2 ,t, pµA
1 ,t = pµB

2 ,t = 0}. Let ω represent some number

in between 0 and 1. There are nine possible combinations of the values

of (pµB
1 ,t, pµA

2 ,t): (1, 1), (1, 0), (1, ω), (ω, 1), (ω, ω), (ω, 0), (0, 1), (0, ω),

(0, 0). Let

AWµ2 = UA(µ2; ht)− UW (µ2; ht; {pµB
1 ,t, pµA

2 ,t, pµA
1 ,t = pµB

2 ,t = 0})
WBµ1 = UW (µ1; ht; {pµB

1 ,t, pµA
2 ,t, pµA

1 ,t = pµB
2 ,t = 0})− UB

By continuity, we can find at least one of the following cases will exist:

2.2.1 (pµB
1 ,t, pµA

2 ,t) = (1, 1) =⇒ AWµ2 > 0, WBµ1 < 0

2.2.2 (pµB
1 ,t, pµA

2 ,t) = (1, ω) =⇒ AWµ2 > 0, WBµ1 = 0

2.2.3 (pµB
1 ,t, pµA

2 ,t) = (1, 0) =⇒ AWµ2 > 0, WBµ1 > 0

2.2.4 (pµB
1 ,t, pµA

2 ,t) = (ω, 1) =⇒ AWµ2 = 0, WBµ1 < 0

2.2.5 (pµB
1 ,t, pµA

2 ,t) = (ω, ω) =⇒ AWµ2 = 0, WBµ1 = 0

2.2.6 (pµB
1 ,t, pµA

2 ,t) = (ω, 0) =⇒ AWµ2 = 0, WBµ1 > 0

2.2.7 (pµB
1 ,t, pµA

2 ,t) = (0, 1) =⇒ AWµ2 < 0, WBµ1 < 0

2.2.8 (pµB
1 ,t, pµA

2 ,t) = (0, ω) =⇒ AWµ2 < 0, WBµ1 = 0

2.2.9 (pµB
1 ,t, pµA

2 ,t) = (0, 0) =⇒ AWµ2 < 0, WBµ1 > 0

If any one of above cases exists, then the strategy profile in that case

is an equilibrium strategy profile in period t.15

2.3 If UA(µ2; ht) ≥ UA(µ1; ht) > UB, {pµB
1 ,t = pµB

2 ,t = 0, pµA
1 ,t = pµA

2 ,t = 1}
is an equilibrium strategy profile in period t.

15Note, since the benefit from waiting is derived from the continuation game, we must con-
struct the entire scheme of the continuation game first, then find out if the conjectured strategy
profile (pµB

1 ,t, pµA
2 ,t) is indeed an equilibrium in period t. Same logic applies to the following

proof.
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...

...

Step K Continue to the subgame G{µ1,µ2,...,µK}(ht) with all the possible types of

individuals µ1, µ2, . . . , µK . That is, M = {µ1, µ2, . . . , µK}. There are K +1

possible cases:

K.1 If UB ≥ UA(µK ; ht) ≥ UA(µK−1; ht) ≥ . . . ≥ UA(µ1; ht), then {pµB
1 ,t =

pµB
2 ,t = . . . = pµB

K ,t = 1, pµA
1 ,t = pµA

2 ,t = . . . = pµA
K ,t = 0} is an

equilibrium strategy profile in period t.

...

...

K.K+1 If UA(µK ; ht) ≥ UA(µK−1; ht) ≥ . . . ≥ UA(µ1; ht) ≥ UB, then

{pµB
1 ,t = pµB

2 ,t = . . . = pµB
K ,t = 0, pµA

1 ,t = pµA
2 ,t = . . . = pµA

K ,t = 1} is an

equilibrium strategy profile in period t.

We can see in the final Step K if we replace ht with h1 then G{µ1,µ2,...,µK}(h1)

is the original game.

(ii) Large Number and Patient Individuals:

If the number of individuals is large and µA
1 (h1) strictly smaller than µ (fi-

nite discrete private signal space: pµA strictly greater than 0), by the Law of

Large Numbers, the true value of the risky investment option A will be (approx-

imately) revealed in the second period. Similarly, if the number of individuals

is large and µB
1 (h1) strictly greater than µ (finite discrete private signal space:

pµB strictly greater than 0), by the Law of Large Numbers, the true value of the

risky investment option A will be (approximately) revealed in the second period.

In this case, if individuals are patient enough, then all individuals will wait in
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period 1 such that µA
1 (h1) = µ and µB

1 (h1) = µ (finite discrete private signal

space: pµA = 0 and pµB = 0). This is a contradiction. Thus, if the number of

individuals is large and individuals are patient enough, in any period ∞ > t > 1,

the game is “almost” the same as the period 1 game: either µA
t (ht) = µA

t−1(ht−1)

or µA
t (ht) ≈ µA

t−1(ht−1) (finite discrete private signal space: either pµA = 0 or

pµA ≈ 0); and either µB
t (ht) = µB

t−1(ht−1) or µB
t (ht) ≈ µB

t−1(ht−1) (finite discrete

private signal space: either pµB = 0 or pµB ≈ 0). Thus, at any fixed time, there is

a negligible proportion of individuals exercising A or B and so is the information

disclosed.
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CHAPTER 3

Group Reputation — A Model of Corruption

3.1 Introduction

What is group reputation? How should its formation and evolution be modeled?

The starting point of the reputation model is incomplete information, which

induces either adverse selection, moral hazard, or both. Reputation matters

when players want to establish a long-term relationship with others.

Tirole (1996) is the first attempt to model the idea of group reputation as

an aggregate of individual reputations. Due to group pooling (individual play-

ers’ unknown ages and imperfect signals of players’ history records), individual

reputations relate to group reputation; and the new members may suffer from

the original sin of their elders. Levin (2001) adopts a similar idea that a player

cannot be perfectly distinguished from others and argues that peers’ past be-

haviors affect players’ record of performance. Both papers focus on individual

reputation and do not clarify the difference between individual reputation and

group reputation.

In this paper, we define Individual Reputation and Group Reputation as

follows:

A player Ai’s individual reputation to do X with respect to some
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others Pj is the belief of Pj on the type or behavior of Ai to do X.1

Group Gk’s group reputation to do X with respect to Pj is the

belief of Pj on the type or behavior of any player As ∈ Gk, to whom

Pj does not have individual information, to do X.

According to this definition, we divide group Gk into two separate subgroups:

players whom Pj is familiar with (Pj has additional individual signals on these

players), players whom Pj is not familiar with. For players belonging to the

first subgroup, each player’s individual reputation with respect to Pj may vary

upon the individual signals Pj has. But for players belonging to the second

subgroup, each player’s individual reputation with respect to Pj is same as the

group reputation because Pj does not have additional individual signals on these

players.

For a sufficiently large group, it is safe to say that there are always some

players within the group unfamiliar to some others Pj. If indeed Pj is familiar

with everyone in a group Gk, we can define the group reputation of Gk with

respect to Pj as follows: imagining if there were a player who belongs to Gk

but Pj does not have individual information regarding this player, what is his

individual reputation? And this represents the group reputation.

In other words, a player’s group reputation is the belief others have about the

characteristics of the group he belongs to, which is based only on group signals.

A player’s individual reputation is derived from his group reputation by adding

individual signals.

In this paper, a model of group reputation of civil servants is constructed to

identify the strategic behavior of potential bribers and civil servants, the cor-

1According to Hardin (1993), trust is a three-part relationship: A trust B to do X. Similarly,
reputation is also a three-part relationship: B’s reputation to do X with respect to A is A’s
belief on the type or behavior of B to do X.
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responding levels of corruption, and possible anti-corruption policies along with

their effects.

The definition of corruption according to Bardhan (1997) is “the use of public

office for private gains, where an official (the agent) entrusted with carrying out a

task by the public (the principal) engages in some sort of malfeasance for private

enrichment which is difficult to monitor for the principal”. Most current literature

on corruption focuses on the principal-agent relationship between officials and the

government, in which the officials delegate the government to allocate some scarce

resources.

In this paper, we focus on two types of corruption behavior of civil servants:

accepting bribes and dereliction of duty. Civil servants have the right to examine

and approve some project of the private agents by some criteria, such as the road

test for a driver license. The civil servants could belong to the type of “good”,

“bad”, or “opportunist”. The good type always rejects bribes and implements

fair tests. The bad type always accepts bribes and intentionally places obstacles

during the tests if there is no bribe. And the opportunist type will weigh the

advantages and disadvantages to decide whether to accept bribes or intentionally

place obstacles during the tests if there is no bribe. Since a private agent does

not know the true type of a civil servant, he will decide whether or not to offer a

bribe according to the current group reputation of the civil servants.

The reason to focus on these two types of corruption is that bribes accepted by

civil servants are actually “protection money” to prevent them from dereliction of

duty, which is different from the “grease money” as in the corruption on allocating

scarce resources. The former is more closely linked to the civilians. And the

result of this kind of corruption is much more severe because “protection money”

directly affect the welfare of the civilians. The corruption related to “grease
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money” only affect the welfare of the civilians indirectly through embezzling the

public resources by the officials and the bribers. In some cases, “grease money”

even could reduce the inefficiency in public administration. For instance, Lui

(1985) argues “the server could choose to speed up the services when briber is

allowed” and as a result the outcome is socially optimal.

There are several related strands of literature. The first is on individual

reputation. Holmstrom (1999) investigates the dynamic incentive problem – the

agent has the strongest incentive to work hard to reveal his managerial ability. As

time goes by, his ability is learned, and thus the reputation effect on incentive also

decreases. Kreps and Wilson (1982), Milgrom and Roberts (1982), Fudenberg and

Levine (1989), Ely, Fudenberg and Levine (2004), and many others investigate

the settings of a single long-run player and a sequence of short-run opponents

– the long-run player tries to commit to some type to achieve highest possible

utility. Horner (2002) introduces competition to keep high efforts sustainable.

The second is on statistical discrimination. Because agents cannot perfectly

signal their characteristics, the multiplicity of equilibria becomes possible as the

possibility of a differential treatment of agents based on some observable charac-

teristics. Cornell and Welch (1996) develop a model on ”screening discrimination”

merely based on “unfamiliarity”, which makes it more difficult to make accurate

assessments. Fang (2001) shows that by allowing the firm to give preferential

treatment to workers based on some “cultural activity”, the society can partially

overcome the informational free-riding problem. The critique on the statistical

discrimination theory is that it is a static theory, which does not say much about

reputation formation and its persistence.

For the dynamic reputation model, Diamond (1989) constructs a model in

debt markets. His key point is that as time goes by, bad type drops out, which
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drives up the reputation for the remaining agents.

The paper is structured as follows. Section 3.2 describes the basic model and

establishes the conditions for the possible steady states. Section 3.3 provides the

dynamic analysis and studies the effectiveness of one time anti-corruption policy.

Section 3.4 concludes.

3.2 Model

3.2.1 Basic Settings

In this section, we develop a model in which there exist a benevolent government,

a group of social servants, and a large number of private agents. The benevolent

government selects and supervises social servants who delegate the government

to examine and approve some projects of the private agents by some criterion.

The civil servants could be the type of “good”, “bad”, or “opportunist”,

denoted as type “G”, “B”, “BG” respectively. The good type “G” always rejects

bribes and implement fair tests. The bad type “B” always accepts bribes if there

are any and intentionally place obstacles during the tests if there is no bribe.

And the opportunist type “BG” will weigh the advantage and disadvantage to

decide whether to accept bribes or intentionally place obstacles during the tests

if there is no bribe. Because the behavior for the type “G”, “B” is fixed, we only

need to study the strategic behavior of the “opportunist” type “BG”.

If a civil servant accepts a bribe, there is probability α ∈ (0, 1) he will be

detected and removed from the office by the government. If a civil servant in-

tentionally places obstacles during a test, there is probability γ ∈ (0, 1) he will

be detected and removed from the office by the government. Thus, there are two

types of corruption behavior for the civil servants: accepting bribes and derelic-
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tion of duty. And (α, γ) represents the supervision effort level of the government

regarding to these two types of corruption behavior.

The civil servants alive in date t remain in the economy in date t + 1 with

probability λ ∈ (0, 1). We assume that each quit is offset by the arrival of a new

civil servant selected by the government from a population with proportion of

the three types “G”, “B”, “BG”: fG, fB, fBG. So the size of the civil servants

remains constant.

At the beginning of each period, a number of private agents is selected by the

government to get their projects tested. Each private agent included in the tests

will decide to offer a bribe or not to the civil servant who is assigned to test his

project. Then the civil servants will decide to reject or accept bribes if there are

any. If there is no bribe, the civil servants will decide to implement fair tests or

intentionally place obstacles during the tests. The timing of the model in any

arbitrary period t is summarized in the figure below.

private agents 
offering bribes
or not

civil servants 
accepting or rejecting
bribes if there are any

civil servants 
implementing fair tests
or unfair tests

govenment
dedecting the corruption
behavior

test, dedection, and
quit results revealed
with payoff paid

Figure 3.1: Timing in period t

In period t, the utility of each private agent included in the tests from offering

a bribe and not offering a bribe are as follows:

U b
t = PA,t[µG(1− α)X − C] + (1− PA,t)[µGX − ηC]

Un
t = PB,t[µBX] + (1− PB,t)[µGX]

where PA,t is the belief of the private agent that the civil servant he meets will

accept a bribe if there is any; and PB,t is the belief of the private agent that the
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civil servant he meets will intentionally place obstacles during the test if there is

no bribe.2 µG is the probability of the project being approved under a fair test.

µB is the probability of the project being approved under an unfair test. X is

benefit from an approved project. C is the cost of bribe.3 η ∈ (0, 1) is the share

of loss on a bribe if it is rejected.

So, the private agent will not offer a bribe at the beginning of period t if

U b
t ≤ Un

t . That is,

PB,t[(µG − µB)X] ≤ ηC + PA,t[(1− η)C + αµGX] (3.1)

In period t, if there is a bribe, the utility of the “opportunist” type “BG” civil

servant from rejecting it and accepting it are as follows:

V R
t = Y + δλVt+1

V A
t = Y + C + δ(1− α)λVt+1 − Γ(PA,t)

where Y is the wage of the civil servant in each period. δ ∈ (0, 1) is the discount

factor. Vt+1 is the continuation payoff in period t + 1. Γ(PA,t) is the cost from

accepting a bribe, which is a decreasing function of PA,t.
4

So, the “opportunist” type “BG” civil servant will reject bribes in period t if

V R
t ≥ V A

t . That is,

δαλVt+1 ≥ C − Γ(PA,t) (3.2)

The utility of the “opportunist” type “BG” civil servant in period t from

implementing a fair test or intentionally placing obstacles during the test if there

2{PA,t, PB,t} represents the group reputation of the civil servants in period t, which is
the belief of the private agents on the two types of corruption behavior of the civil servants:
accepting bribes and dereliction of duty.

3Here, we assume the size of bribe fixed. Later, we may incorporate the endogenous size of
bribe.

4We assume that the “opportunist” type “BG” civil servant who accepts bribes will suffer
some cost. It may be due to the secrecy of bribery behavior and mental burden of pursuing
private gains by using public office. And this cost will decrease as accepting bribe becomes a
general mood of the society.
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is no bribe are as follows:

V G
t = Y + δλVt+1

V B
t = Y + δ(1− γ)λVt+1

Since V G
t ≥ V B

t , the “opportunist” type “BG” civil servant will always implement

fair tests no matter the private agent offers bribes or not. The logic behind is

that even though the “opportunist” type “BG” civil servants may accept bribes,

they are still not so “bad” as the bad type “B” civil servants are. They are not

willing to harm others while not benefit themselves.

In this paper, we focus on the symmetric equilibrium. For simplicity, we

assume that the number of civil servants and private agents are so large that in

each period the pairs of the civil servants and private agents who have matched

before are relatively small. Thus, the effect of re-match could be omitted upon

updating the private agents’ belief of the entire group of civil servants, which is

the group reputation for the entire group of civil servants.5 If indeed re-match

occurs, then the private agent in this re-match will update the belief on the civil

servant in this re-match based on the current group belief and the history record

of this civil servant, which is the individual reputation of this civil servant.

Now, we need to identify the evolution of proportions of the three types of

civil servants as time goes by. Denote fG,t, fB,t, fBG,t as the fractions of “G”,

“B”, “BG” type of civil servants respectively in period t. Then {fB,t, fBG,t, fG,t}
represents the state of the economy in period t. In period t + 1, the transition of

the state of the economy is described in the following three cases, depending on

the actions chosen by the private agents and the “opportunist” type “BG” civil

servants in period t.

5In other words, the setting of our model is equivalent to the setting of a group of long-run
players and a sequence of short-run opponents.
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Case 1: private agents NOT offering bribes in period t

fG,t+1 = λfG,t + [(1− λ) + λγfB,t]fG

fBG,t+1 = λfBG,t + [(1− λ) + λγfB,t]fBG

fB,t+1 = λ(1− γ)fB,t + [(1− λ) + λγfB,t]fB

(3.3)

Case 2: private agents offering bribes and the “opportunist” type “BG” civil

servants rejecting the bribes in period t

fG,t+1 = λfG,t + [(1− λ) + λαfB,t]fG

fBG,t+1 = λfBG,t + [(1− λ) + λαfB,t]fBG

fB,t+1 = λ(1− α)fB,t + [(1− λ) + λαfB,t]fB

(3.4)

Case 3: private agents offering bribes and the “opportunist” type “BG” civil

servants accepting the bribes in period t

fG,t+1 = λfG,t + [(1− λ) + λα(fB,t + fBG,t)]fG

fBG,t+1 = λ(1− α)fBG,t + [(1− λ) + λα(fB,t + fBG,t)]fBG

fB,t+1 = λ(1− α)fB,t + [(1− λ) + λα(fB,t + fBG,t)]fB

(3.5)

Since only the “bad” type “B” civil servant will intentionally place obstacles

during the tests if there is no bribe, PB,t = fB,t. For the symmetric equilibrium,

either only the “bad” type “B” civil servant will accept bribes or both the “bad”

type “B” civil servant and the “opportunist” type “BG” civil servant will accept

bribes if there are any. That is to say, either PA,t = fB,t or PA,t = fB,t + fBG,t.

3.2.2 Steady States

In this section, we analyze the four possible steady states and their feasible con-

ditions.
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3.2.2.1 Low Corruption Steady State I (LCSS-I)

The first one is Low Corruption Steady State I (LCSS-I), in which the private

agents do not offer bribes and the “opportunist” type “BG” civil servants reject

bribes if there are any. By equation 3.3, we can derive the proportions of three

types of civil servants at LCSS-I, denoted as f I
G, f I

B, f I
BG.

f I
G =

1− λ + λγ

1− λ + λγ(1− fB)
fG

f I
BG =

1− λ + λγ

1− λ + λγ(1− fB)
fBG

f I
B =

1− λ

1− λ + λγ(1− fB)
fB

The utility for the “opportunist” type “BG” civil servant at LCSS-I, denoted

as VL, is

VL = Y + δλVL =⇒ VL =
1

1− δλ
Y

At LCSS-I, PB,t = PA,t = f I
B. Back to inequality 3.1 and 3.2, to induce a

private agent not to offer a bribe and an “opportunist” type “BG” civil servant

reject a bribe if there is any, the following conditions must hold.

Feasible Conditions of LCSS-I:

(1− δλ)Γ(f I
B) ≥ (1− δλ)C − δαλY

f I
B[(µG − µB)X] ≤ ηC + f I

B[(1− η)C + αµGX]

3.2.2.2 Low Corruption Steady State II (LCSS-II)

The second steady state is Low Corruption Steady State II (LCSS-II), in which

the private agents do not offer bribes and the “opportunist” type “BG” civil

servants accept bribes if there are any. By equation 3.3, we can derive the pro-

portions of three types of civil servants at LCSS-II. Because the private agents
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do not offer bribes, the proportions of three types of civil servants at LCSS-II are

same as the proportions of three types of civil servants at LCSS-I.

Same logic, the utility for the “opportunist” type “BG” civil servant at LCSS-

II is same as the utility for the “opportunist” type “BG” civil servant at LCSS-I,

VL.

At LCSS-II, PB,t = f I
B, and PA,t = f I

B + f I
BG. Back to inequality 3.1 and 3.2,

to induce a private agent not to offer a bribe and an “opportunist” type “BG”

civil servant accept a bribe if there is any, the following conditions must hold.

Feasible Conditions of LCSS-II:

(1− δλ)Γ(f I
B + f I

BG) < (1− δλ)C − δαλY

f I
B[(µG − µB)X] ≤ ηC + (f I

B + f I
BG)[(1− η)C + αµGX]

3.2.2.3 Low Corruption Steady State III (LCSS-III)

The third steady state is Low Corruption Steady State III (LCSS-III), in which

the private agents offer bribes and the “opportunist” type “BG” civil servants

reject bribes if there are any. By equation 3.3, we can derive the proportions of

three types of civil servants at LCSS-III, denoted as f III
G , f III

B , f III
BG .

f III
G =

1− λ + λα

1− λ + λα(1− fB)
fG

f III
BG =

1− λ + λα

1− λ + λα(1− fB)
fBG

f III
B =

1− λ

1− λ + λα(1− fB)
fB

Due the the rejection of the bribe, the utility for the “opportunist” type

“BG” civil servant at LCSS-III is the same as the utility for the “opportunist”

type “BG” civil servant at LCSS-I and LCSS-II, VL.

At LCSS-III, PB,t = PA,t = f III
B . Back to inequality 3.1 and 3.2, to induce a
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private agent offer a bribe and an “opportunist” type “BG” civil servant reject a

bribe if there is any, the following conditions must hold.

Feasible Conditions of LCSS-III:

(1− δλ)Γ(f III
B ) ≥ (1− δλ)C − δαλY

f III
B [(µG − µB)X] > ηC + f III

B [(1− η)C + αµGX]

3.2.2.4 High Corruption Steady State (HCSS)

The last possible steady state is High Corruption Steady State (HCSS), in which

the private agents offer bribes and the “opportunist” type “BG” civil servants

accept bribes if there are any. By equation 3.3, we can derive the proportions of

three types of civil servants at HCSS, denoted as fG, fBG, fB.

fG =
1− λ + λα

1− λ + λα(1− fB − fBG)
fG

fBG =
1− λ

1− λ + λα(1− fB − fBG)
fBG

fB =
1− λ

1− λ + λα(1− fB − fBG)
fB

At HCSS, PB,t = fB, and PA,t = fBG + fB. The utility for the “opportunist”

type “BG” civil servant at HCSS, denoted as VH , is

VH = Y +C − Γ(fBG + fB) + δλ(1− α)VH

=⇒ VH =
1

1− δλ(1− α)
(Y + C − Γ(fBG + fB))

Back to inequality 3.1 and 3.2, to induce a private agent to offer a bribe

and an “opportunist” type “BG” civil servant accept a bribe if there is any, the

following conditions must hold.

Feasible Conditions of HCSS:

(1− δλ)Γ(fBG + fB) < (1− δλ)C − δαλY

fB[(µG − µB)X] > ηC + (fBG + fB)[(1− η)C + αµGX]
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3.3 Dynamic Analysis and Anti-Corruption

In this section, we analyze the dynamical situation if the economy in period

t is currently at some arbitrary state: {fB,t, fBG,t, fG,t}. Then we discuss the

effectiveness of possible anti-corruption policies.

3.3.1 Dynamic Analysis

Proposition 3.1 Suppose in period t the economy is currently at some state:

{fB,t, fBG,t, fG,t}. There are only four possible areas of the state space.

Low corruption area I (L-I): in period t, private agents will not

offer bribes and the “opportunist” type “BG” civil servants will reject

bribes if there are any. The transition of the state of the economy

from period t to period t + 1 follows equations 3.3.

Low corruption area II (L-II): in period t, private agents will not

offer bribes and the “opportunist” type “BG” civil servants will accept

bribes if there are any. The transition of the state of the economy from

period t to period t + 1 follows equations 3.3.

Low corruption area III (L-III): in period t, private agents will

offer bribes and the “opportunist” type “BG” civil servants will reject

bribes if there are any. The transition of the state of the economy

from period t to period t + 1 follows equations 3.4.

High corruption area (H): in period t, private agents will offer

bribes and the “opportunist” type “BG” civil servants will accept bribes

if there are any. The transition of the state of the economy from period

t to period t + 1 follows equations 3.5.
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i) If fB,t ≤ min{f ∗B, f ∗∗B }, fB,t ∈ L-I.

ii) If f ∗B < fB,t ≤ f ∗∗B , fB,t ∈ L-III.

iii) If f ∗∗B < fB,t ≤ f ∗B and fBG,t ≥ f ∗BG(fB,t), fB,t ∈ L-I or L-II.

iv) If max{f ∗B, f ∗∗B } < fB,t and fBG,t ≥ f ∗BG(fB,t), fB,t ∈ L-II or L-III.

v) If fB,t > f ∗∗B and fBG,t < f ∗BG(fB,t), fB,t ∈ or L-III or H.

where f ∗B, f ∗∗B , f ∗BG(fB) are the solutions of the following equations.6

f ∗B[(µG − µB)X] = ηC + f ∗B[(1− η)C + αµGX] (3.6)

(1− δλ)Γ(f ∗∗B ) = (1− δλ)C − δαλY (3.7)

f ∗BG(fB) = − ηC

(1− η)C + αµGX
+

(µG − µB)X − [(1− η)C + αµGX]

(1− η)C + αµGX
fB (3.8)

Proof. See the Appendix.

Figure 3.2 sketches out the state space partition of Proposition 3.1 in the case

of f ∗∗B > f ∗B and (µG − µB)X − [(1− η)C + αµGX] > 0.7

Figure 3.3 sketches out the state space partition of Proposition 3.1 in the case

of f ∗∗B ≤ f ∗B and (µG − µB)X − [(1− η)C + αµGX] > 0.

Figure 3.4 sketches out the state space partitions of Proposition 3.1 in the

case of (µG− µB)X − [(1− η)C + αµGX] ≤ 0. In this case, both Low corruption

area III (L-III) and High corruption area (H) disappear.8

6f∗B and f∗∗B must be in between 0 and 1. If the solutions of equation 3.6 and/or equation
3.7 out of this range, we say f∗B and/or f∗∗B do not exist.

7Note, in this case, f∗BG(f∗B) = 0. Thus, the extended line of f∗BG(fB,t) will go through the
point (fB,t = f∗B , fBG,t = 0).

8In this case, f∗B is negative. Since the solution of equation 3.6 has negative solution, this
means private agents never offer bribes.
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Figure 3.2: f ∗∗B > f ∗B and (µG − µB)X − [(1− η)C + αµGX] > 0

There are some more minor variations of the state space partitions depending

on the values of f ∗B, f ∗∗B , f ∗BG(fB). But the basic shapes are described as in figure

3.2 to 3.4.

After discussing the transition of the state in period t+1, the natural extension

is to characterize the long run properties, that is, whether the economy can

converge to some steady state. From proposition 3.1, we have the following

corollary.

Corollary 3.1 Low Corruption Steady State I (LCSS-I) is feasible if {f I
G, f I

B, f I
BG}

is in the Low corruption area I (L-I). Similarly, Low Corruption Steady State II

(LCSS-II) is feasible if {f I
G, f I

B, f I
BG} is in the Low corruption area II (L-II); Low

Corruption Steady State III (LCSS-III) is feasible if {f III
G , f III

B , f III
BG} is in the

Low corruption area III (L-III); High Corruption Steady State (HCSS) is feasible
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Figure 3.3: f ∗∗B ≤ f ∗B and (µG − µB)X − [(1− η)C + αµGX] > 0

if {fG, fBG, fB} is in the High corruption area (H).

Further, if a steady state is feasible and the economy is currently at some

state in the same area of this steady state, the economy will converge to this

steady state.

Proof. See the Appendix.

In the long run, if no steady state is feasible, then the state of the economy

will fluctuate back and forth among these four possible areas of state space. Even

in the case that some steady state is feasible, the state of the economy may not

converge to it.

For instance, suppose the state space partition is described in figure 3.1 and

Low Corruption Steady State I (LCSS-I) is in the the Low corruption area III (L-
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Figure 3.4: (µG − µB)X − [(1− η)C + αµGX] ≤ 0

III) and Low Corruption Steady State III (LCSS-III) is in the the Low corruption

area I (L-I). In period t, if {fB,t, fBG,t, fG,t} is in the Low corruption area I (L-I),

the transition of the state of the economy from period t to period t+1 still follows

equations 3.3 and it will be on the path of converging to the Low Corruption

Steady State I (LCSS-I). But once it crosses the boundary of the Low corruption

area I (L-I) and goes into the Low corruption area III (L-III), the transition of

the state of the economy will follow equations 3.4 and will be on the path of

converging to the Low Corruption Steady State III (LCSS-III) and go back to

the Low corruption area I (L-I). The state of the economy will fluctuate back

and forth between the Low corruption area I (L-I) and the Low corruption area

III (L-III). In this case, if High Corruption Steady State (HCSS) is in the High

corruption area (H), the state of the economy may not converge to it even though
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it is feasible. Thus, we have the following corollary.

Corollary 3.2 In the long run, the state of the economy may not converge to

any steady state, even in the case that some steady state is feasible.

3.3.2 One Time Anti-Corruption

In this section, we assume that the economy currently suffers from high level

corruption, i.e., the economy is at the High Corruption Steady State (HCSS) or

fluctuating in between the High corruption area (H) and some Low corruption

area. The government introduces a one time anti-corruption policy, aiming to

lead to a low corruption level permanently.

One time anti-corruption policy means a combination of new level of super-

vision effort {αt, γt} in period t. And it only lasts one period. After period t,

the supervision effort goes back to the original level. We say a one time anti-

corruption policy is effective if after period t the economy converges to some Low

Corruption Steady State or fluctuates in between some Low corruption areas.

Proposition 3.2 One time anti-corruption policy may or may not be effective

depending on the environment of the economy.

i) In the case when there does not exist one time anti-corruption policy to effec-

tively turn around the high level corruption, the government must introduce

a permanent anti-corruption policy, i.e., permanently adjusting the level of

supervision effort.

ii) In the case when there exists one time anti corruption policy to effectively

turn around the high level corruption, when the government sets a one time

anti-corruption policy, not only does it have to increase the supervision
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effort on detecting the bribery behavior (α), but also it needs to consider

the the supervision effort on detecting the behavior of intentionally placing

obstacles (dereliction of duty) during the test (γ). Anti-corruption should

work along both lines.

Proof. See the Appendix.

3.3.3 Re-match

Since we assume that the number of civil servants and private agents are so large

that in each period the pairs of the civil servants and private agents who have

matched before are relatively small. Thus, the effect of re-match could be omitted

upon updating the private agents’ belief of the entire group of civil servants, which

is the group reputation for the entire group of civil servants as we have discussed

so far.

If indeed re-match occurs, then the private agent in this re-match will update

the belief on the civil servant in this re-match based on the current group belief

and the history record of this civil servant, which is the individual reputation of

this civil servant.

For instance, if the the civil servant has rejected this private agent’s bribe

before, the private agent will not offer a bribe because he knows that this civil

servant is “G” type. If the civil servant has intentionally placed obstacles during

the test before, the private agent knows that this civil servant is “B” type. He

is more likely to offer a bribe to keep this civil servant from intentionally placing

obstacles during the test.
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3.4 Conclusion

This paper presents a group reputation model of corruption. First, we define the

group reputation and individual reputation. Then, a model of group reputation of

civil servants is constructed to identify the strategic behavior of potential bribers

and civil servants. We identify four possible steady states and their feasible

conditions, provide dynamic analysis and study the effectiveness of one time

anti-corruption policy. We show that one time anti-corruption policy may or

may not be effective in successfully overturning the high corruption steady state

depending on the economic environment.

In the case when there does not exist one time anti-corruption policy to ef-

fectively turn around the high level corruption, the government must introduce a

permanent anti-corruption policy, i.e., permanently adjusting the level of super-

vision effort.

In the case when there exists one time anti corruption policy to effectively

turn around the high level corruption, then when the government sets a one

time anti-corruption policy, not only does it have to increase the supervision

effort on detecting the bribery behavior (α), but also it needs to consider the

the supervision effort on detecting the behavior of intentionally placing obstacles

(dereliction of duty) during the test (γ). Anti-corruption should work along both

lines.

Finally, we assume the effect of re-match could be omitted upon updating

the private agents’ belief of the entire group of civil servants. This simplifies

the model a lot. If we relax this assumption, we may get much richer dynamic

scenarios on the interactions between group reputation and individual reputation.
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3.5 Appendix

Proof of Proposition 3.1

i) If fB,t ≤ min{f ∗B, f ∗∗B }, fB,t ∈ L-I.

Since the continuation payoff of the civil servants is bounded below by VL =

1
1−δλ

Y , if fB,t ≤ min{f ∗B, f ∗∗B }, by equation 3.7, we have

δαλVt+1 ≥ δαλ
1

1− δλ
Y = C − Γ(f ∗∗B ) ≥ C − Γ(fB,t)

By inequality 3.2, this means in period t the “opportunist” type “BG” civil

servants will reject bribes if there are any.9 By equation 3.6, we have

fB,t[(µG − µB)X] ≤ ηC + fB,t[(1− η)C + αµGX]

By inequality 3.1, private agents in period t will not offer bribes. The transition

of the state of the economy from period t to period t + 1 follows equations 3.3.

ii) If f ∗B < fB,t ≤ f ∗∗B , fB,t ∈ L-III.

Similar to the proof before, since the continuation payoff of the civil servants

is bounded below by VL = 1
1−δλ

Y , if f ∗B < fB,t ≤ f ∗∗B , by equation 3.7 we have

δαλVt+1 ≥ δαλ
1

1− δλ
Y = C − Γ(f ∗∗B ) ≥ C − Γ(fB,t)

By inequality 3.2, this means in period t the “opportunist” type “BG” civil

servants will reject bribes if there are any.10

By equation 3.6, we have

fB,t[(µG − µB)X] > ηC + fB,t[(1− η)C + αµGX]

9Similar to the multiple equilibria issue in the coordination game, there could be another
equilibrium, in which the “opportunist” type “BG” civil servants will accept bribes if there are
any.

10Same as the multiple equilibria issue in the coordination game, there could be another
equilibrium, in which the “opportunist” type “BG” civil servants will accept bribes if there are
any.
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By inequality 3.1, private agents in period t will offer bribes. The transition of

the state of the economy from period t to period t + 1 follows equations 3.4.

iii) If f ∗∗B < fB,t ≤ f ∗B and fBG,t ≥ f ∗BG(fB,t), fB,t ∈ L-I or L-II.

Since f ∗∗B < fB,t, we do not have a definite answer whether the “opportunist”

type “BG” civil servants will accept or reject bribes in period t. There are two

possible situations.

First, if the continuation payoff of the civil servants Vt+1 is small such that

δαλVt+1 < C − Γ(fB,t)

by inequality 3.2, this means in period t the “opportunist” type “BG” civil ser-

vants will accept bribes if there are any. If fBG,t ≥ f ∗BG(fB,t), by equation 3.8,

we have

fB,t[(µG − µB)X] ≤ ηC + (fB,t + fBG,t)[(1− η)C + αµGX]

By inequality 3.1, private agents in period t will not offer bribes. The transition

of the state of the economy from period t to period t + 1 follows equations 3.3.

Thus, in this case, fB,t ∈ L-II.

Second, if the continuation payoff of the civil servants Vt+1 is large such that

δαλVt+1 ≥ C − Γ(fB,t)

by inequality 3.2, this means in period t the “opportunist” type “BG” civil ser-

vants will reject bribes if there are any. If fB,t ≤ f ∗B, by equation 3.6, we have

fB,t[(µG − µB)X] ≤ ηC + fB,t[(1− η)C + αµGX]

By inequality 3.1, private agents in period t will not offer bribes. The transition

of the state of the economy from period t to period t + 1 follows equations 3.3.

Thus, in this case, fB,t ∈ L-I.
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iv) If max{f ∗B, f ∗∗B } < fB,t and fBG,t ≥ f ∗BG(fB,t), fB,t ∈ L-II or L-III.

Similar to the proof before, since f ∗∗B < fB,t, we do not have a definite answer

whether the “opportunist” type “BG” civil servants will accept or reject bribes

in period t. There are two possible situations.

First, if the continuation payoff of the civil servants Vt+1 is small such that

δαλVt+1 < C − Γ(fB,t)

by inequality 3.2, this means in period t the “opportunist” type “BG” civil ser-

vants will accept bribes if there are any. If fBG,t ≥ f ∗BG(fB,t), by equation 3.8,

we have

fB,t[(µG − µB)X] ≤ ηC + (fB,t + fBG,t)[(1− η)C + αµGX]

By inequality 3.1, private agents in period t will not offer bribes. The transition

of the state of the economy from period t to period t + 1 follows equations 3.3.

Thus, in this case, fB,t ∈ L-II.

Second, if the continuation payoff of the civil servants Vt+1 is large such that

δαλVt+1 ≥ C − Γ(fB,t)

by inequality 3.2, this means in period t the “opportunist” type “BG” civil ser-

vants will reject bribes if there are any. If fB,t > f ∗B, by equation 3.6, we have

fB,t[(µG − µB)X] > ηC + fB,t[(1− η)C + αµGX]

By inequality 3.1, private agents in period t will offer bribes. The transition of

the state of the economy from period t to period t+1 follows equations 3.4. Thus,

in this case, fB,t ∈ L-III.

v) If fB,t > f ∗∗B and fBG,t < f ∗BG(fB,t), fB,t ∈ L-III or H.
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If fBG,t < f ∗BG(fB,t), by equation 3.8, we have

fB,t[(µG − µB)X] > ηC + (fB,t + fBG,t)[(1− η)C + αµGX]

≥ ηC + fB,t[(1− η)C + αµGX]

By inequality 3.1, private agents in period t will offer bribes.

Since f ∗∗B < fB,t, we do not have a definite answer whether the “opportunist”

type “BG” civil servants will accept or reject bribes in period t. There are two

possible situations.

First, if the continuation payoff of the civil servants Vt+1 is small such that

δαλVt+1 < C − Γ(fB,t + fBG,t)

by inequality 3.2, this means in period t the “opportunist” type “BG” civil ser-

vants will accept bribes if there are any. The transition of the state of the economy

from period t to period t + 1 follows equations 3.5. Thus, in this case, fB,t ∈ H.

Second, if the continuation payoff of the civil servants Vt+1 is large such that

δαλVt+1 ≥ C − Γ(fB,t + fBG,t)

by inequality 3.2, this means in period t the “opportunist” type “BG” civil ser-

vants will reject bribes if there are any. The transition of the state of the economy

from period t to period t + 1 follows equations 3.4. Thus, in this case, fB,t ∈
L-III.

Proof of Corollary 3.1

From section 3.2.2.1, we have {f I
G, f I

B, f I
BG}. If Low Corruption Steady State

I (LCSS-I) is in the the Low corruption area I (L-I), we can easily check that

the feasible conditions of Low Corruption Steady State I (LCSS-I) described in

section 3.2.2.1 are satisfied.
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In L-I, the transition of the state of the economy follows equations 3.3. In

period s + 1, where s ≥ t + 1

fB,s+1 = λ(1− γ)fB,s + [(1− λ) + λγfB,s]fB

= (1− λ)fB + λ[1− γ(1− fB)]fB,s

Since λ[1− γ(1− fB)] < 1, fB,s+1 < fB,s if fB,s > f I
B; fB,s+1 > fB,s if fB,s < f I

B;

fB,s+1 = fB,s = f I
B if fB,s = f I

B. Thus, fB,s will converge to f I
B. Once fB,s

converges to f I
B, by equations 3.3, similarly fG,s and fBG,s will converge to f I

G

and f I
BG respectively. This means if a steady state is feasible and the economy is

currently at some state in the same area of this steady state, the economy is on

the LCSS-I path and will monotonously converge to LCSS-I.

Similarly, we can check the feasible conditions for all others steady states if

they are in the corresponding areas and the convergence property if the economy

is at some state in the same area of the state states.

Proof of Proposition 3.2

i) For instance, suppose the state space partition is described in figure 3.1 and

all the steady states are in the High corruption area (H). Thus, High Corruption

Steady State (HCSS) is feasible and no matter where the state of the economy

is, the economy will converge to High Corruption Steady State (HCSS). In this

case, any one time anti-corruption policy never works. It only can low the level of

corruption for a period of time, then the corruption level will increase back. The

government must permanently adjust the level of supervision effort to change the

environment of the economy.

ii) For instance, suppose the state space partition is described in figure 3.1

without Low corruption area II (L-II) and Low Corruption Steady State I (LCSS-

I) is in the Low corruption area I (L-I), Low Corruption Steady State III (LCSS-
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III) and High Corruption Steady State (HCSS) in the High corruption area (H).

Thus, Low Corruption Steady State I (LCSS-I) and High Corruption Steady State

(HCSS) are feasible. If the the state of the economy is in the Low corruption area

I (L-I), it will converge to Low Corruption Steady State I (LCSS-I). Otherwise,

it will converge to High Corruption Steady State (HCSS). Therefore, to let a one

time anti-corruption policy in some period t effective, the state of the economy

in period t+1 must be in the Low corruption area I (L-I), i.e., fB+1 ≤ f ∗B, where

where f ∗B are the solutions of the equation 3.6.

Suppose the economy is currently at HCSS, then the sufficient condition to

let the one time anti-corruption successfully covert the economy from HCSS to

LCSS-I is αt ≥ α∗I and γt ≥ γ∗I , where α∗I , γ
∗
I are the solutions of following

equations.

fB[(µG − µB)X] = ηC + fB[(1− η)C + α∗IµGX] (3.9)

f ∗B,I = (1− λ)fB + λ[1− γ∗I (1− fB)]fB (3.10)

The logic is as follows. In current period t, fG,t = fG, fB,t = fB, fBG,t = fBG.

To induce the private agent not to offer bribe in period t and possibly go to

LCSS-I, by inequality 3.1 we must have

fB[(µG − µB)X] ≤ ηC + fB[(1− η)C + αtµGX]

From equation 3.9, we can solve α∗I . Clearly, if αt ≥ α∗I , above inequality

will hold. Then in period t + 1, the supervision effort goes back to the original

level.To let a one time anti-corruption policy in some period t effective, the state

of the economy in period t + 1 must be in the Low corruption area I (L-I), i.e.,

fB+1 ≤ f ∗B, where where f ∗B are the solutions of the equation 3.6.
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By equation 3.3, in period t + 1

fB,t+1 = λ(1− γt)fB + [γtfB + (1− λ)(1− γtfB)]fB

= (1− λ)fB + λ[1− γt(1− fB)]fB

So, we must have

f ∗B,I ≥ (1− λ)fB + λ[1− γt(1− fB)]fB

From equation 3.10, we can solve γ∗I . Clearly, if γt ≥ γ∗I , above inequality will

hold.

Therefore, when the government sets a one time anti-corruption policy, not

only does it have to increase the supervision effort on detecting the bribery be-

havior (α), but also it needs to consider the the supervision effort on detecting

the behavior of intentionally placing obstacles (dereliction of duty) during the

test (γ). Anti-corruption should work along both lines.
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