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1. Introduction

We examine two bidder �rst price, second price, and all-pay auctions with

known values from the point of view of the bidders. These auctions are of

particular interest in political economy because they provide a simple model of

two groups competing over a political prize. In a referendum the proponents

and opponents each have a cost of turning out voters and the group that turns

out the most voters wins. This is an example of an all-pay auction because the

cost is incurred before the election is decided. Lobbying over legislation can

be either an all-pay auction in which each group provides lobbying e�ort and

the stronger lobbying e�ort wins, or it can be a winner-pay auction in which

bribes are o�ered to politicians and only the winning bribe is paid. In political

economy the interest is not so much in revenue but in who prevails, and the

natural measure of how well a group does is the expected utility of the group:

the expected bene�t of the prize less the expected cost of the e�ort needed to

obtain it.

The simplest case to analyze is the second price auction. If both bidders bid

their value then the low value bidder loses and pays nothing while the high value

bidder wins and gets the di�erence between their own value of the prize and

that of their opponent. We refer to this as the second price auction utility. The

tripartite auction theorem has three parts: the �rst part asserts that equilibrium

utility in the second price auction is the second price auction utility. The second

part asserts that equilibrium utility in the �rst price auction is the second price

auction utility, while the third (and least obvious) part asserts that equilibrium

utility in the all-pay auction is also the second price auction utility. In other

words the tripartite auction theorem is the broad assertion that from the bidder

point of view the rules of the auction do not matter. We refer to this as a folk

theorem because it is well known to hold in many particular cases. This result

has additional interest because it is known that for a variety of contests with

random outcomes, such as the Tullock contest, the utility of the bidders is the

same as in the all-pay auction.4 The reader interested in these more general

4See Ewerhart (2017) and Levine, Mattozzi and Modica (2022).

1



contests, particularly with bid caps, will �nd an interesting discussion and set

of references in Olszewski and Siegel (2024)

The goal of this paper is to specify the conditions under which the tripartite

auction theorem does and does not hold, allowing for a wide range of bidding

cost functions. In particular the tripartite auction theorem always holds in the

generic case of what we call standard auctions: either one bidder has a higher

willingness to bid or both an have equal willingness to bid and bidding caps do

not bind. Che and Gale (1998) argue that it does not hold in the symmetric

case when there are binding bidding caps and linear cost. We extend their

results to general cost functions - and show in addition that this case is the only

important one in which the tripartite auction theorem fails.

The importance of the tripartite auction theorem can be seen in the context

of political contests. For example, lobbying might easily be any one of the three

types of auctions: the tripartite auction theorem asserts that from the bidder

perspective it does not matter. Another example is in the Olson (1965) and

Becker (1983) observation that in lobbying small special interests seem to be win

over larger broader interests, although they have no hope of winning a national

election. There are many di�erences between lobbying contests and elections:

one is that lobbying is typically winner-pay while elections are all-pay. But the

tripartite auction theorem tells us that this makes no di�erence - if we want to

understand why Swiss farmers are good at lobbying but poor at elections we

must look instead to the underlying fundamentals, in particular at the structure

of bidding costs. As a �nal example: elections seem ine�cient because both

sides must engage in costly turnout e�ort. Consider the proposal to avoid this

excess cost by having contestants submit bids in the form of promised votes: the

larger promise wins and must then prove their sincerity by actually producing

the votes. The tripartite auction theorem tells us this is useless: the expected

utility of the two parties will be unchanged by such a reform.

We study only two party auctions. It is by no means true that all politi-

cal contests involve only two parties and multi-bidder auctions have sometimes

been used to model multi-party elections. However, multi-party elections are

complicated by the fact that winning a majority is quite di�erent than winning
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a plurality and this is not captured in a multi-bidder auction. Hence our focus

on the case of two parties. In addition, we treat each of the two parties as a

single decision maker although in political economy parties are typically made

up of many individuals. There is a long tradition in political economy of treat-

ing groups as individuals, and modern models such as those of ethical voters

and social mechanisms provide a theoretical underpinning for this approach.5

Social mechanism theory, in particular, shows how particular cost functions for

e�ort provision arise from the underlying mechanism design problem faced by

a group that must overcome the public good problem of inducing individual

members to provide e�ort.6 Here we abstract from that and take the cost of

e�ort provision as given. Hence, the all-pay auctions models here apply to two

parties or coalitions competing in an election and the winner-pays auction to

two coalitions proposing bribes for or against some particular legislation.

As we are interested in auctions arising in political economy with e�ort

provision costs that arise from an underlying public goods problem for each

group, we study general cost functions. We allow bidding caps to re�ect the

possibility that the parties have limited resources or face legal restrictions, and

we allow head starts (see Siegel (2014)) to re�ect the possibility that parties

may have committed or expressive members who will provide e�ort regardless of

strategic considerations. Both of these are common in the literature on auctions.

We also allow the less commonly studied possibility in which there is a �xed

cost of entering into the auction. This arises naturally in the theory of social

mechanisms and is essentially the opposite of head starts. The relevance in

political economy can be seen by the example of the copyright lobbies in the

USA exerting e�ort to restrict internet freedom to prevent �piracy� of their

copyrighted works. There is usually no organized opposition, but occasionally

there is: in the case of the �Stop Online Piracy Act� organizations such as

Wikipedia became involved in coordinating lobbying, and suddenly ordinary

people started phoning and emailing their congress members. The bill quickly

5See See Feddersen and Sandroni (2006), Coate and Conlin (2004) and Levine and
Mattozzi (2020).

6See Levine, Mattozzi and Modica (2022).
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disappeared and was never voted on. This makes perfectly good sense. When

the stakes are relatively low, as are ordinarily, it does not pay to organize a

large group of people to oppose the legislation. When the stakes are high as

they were for the �Stop Online Piracy Act� it does pay to organize a large group

of people to oppose the legislation. This is sensibly modeled by assuming that

there is a �xed cost of organizing a lobbing e�ort and that it is larger for a large

group than a small group.

In addition to studying bidder utility we study the revenue generation of the

di�erent types of auctions and the implications for welfare. In the case of voting

the e�ort has no social value, but in the case of lobbying the e�ort may be in

the form of transfer payments to politicians, so revenue generation is of interest.

Here we show that with convex cost and asymmetry the winner pay auctions

generate more revenue than the all-pay auction, and that this result continues

to hold provided cost is not �too concave.� This forms a sharp contrast to the

results for the symmetric case with linear cost and symmetric uncertain values

where Krishna and Morgan (1997) show that the all-pay auction generates

more revenue. In the political economy setting, where the value of the prize to

the parties is not easily kept secret, with linear cost it is only when values are

symmetric (or one party is unwilling to bid) that the all-pay auction does as

well as the winner pays auctions.

This paper is dedicated to the memory of Konrad Mierendor�. Konrad is

noted for his work on mechanism design and auctions in particular. He was

particularly interested in the types of constraints, such as deadlines, that are

crucial in applied work. He was extremely precise and focused in his work

and always aimed to produce general results and not to simply study special

cases. Our goal in writing this paper is to follow in those footsteps providing

precise, focused, and general results and we hope this is a paper he would have

appreciated.

2. The Model

Two bidders indexed by k ∈ {1, 2} compete for a prize worth Vk > 0 to

contestant k. Each bidder chooses a bid bk ≥ 0. We de�ne ck(bk) the cost of bk
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relative to the value of the prize Vk and without loss of generality we divide the

objective function by Vk so that the value of the prize is normalized to 1 and so

that the ck(bk) is the cost of bidding bk.

We assume that ck(bk) ≥ 0 and that that ck(0) = 0. We assume that

ck(bk) is continuous for bk > 0 and that it is strictly increasing for ck(bk) > 0.

This allows for head starts where ck(bk) = 0 for some initial interval of bids

and for a �xed cost of entry where ck(bk) is discontinuous at bk = 0. We

de�ne ck(0+) ≡ limbk↓0 ck(bk). If ck(0+) = 0, ck is clearly continuous. In the

discontinuous case where ck(0+) > 0 we allow a bid of 0+ which beats 0 and costs

ck(0+) - this corresponds to an in�nitesimal bid. We assume ck(0+) < 1 for at

least one k - otherwise no bidding takes place. To avoid a horde of uninteresting

special cases we also make the generic assumption that ck(0+) 6= 1.

On the upper end of ck(bk), we assume that large enough bids are more

costly than the prize, that is, for some bk we have ck(bk) > 1. In addition there

are bidding caps: k cannot bid more than bk where ck(bk) > 0. Note that there

is no lack of generality in this: if ck(bk) > 1 the bidding caps will not bind.

We will study three types of auctions. In each both bidders submit bids. We

will assume that if both cost functions are discontinuous and both submit a bid

of 0 neither wins the prize. The �rst two auctions are winner pays auctions. In

a second price auction the high bid wins and pays the low bid. In a �rst price

auction the high bid wins and pays their own bid. In the all-pay auction both

pay their bid and the high bid wins.

To complete the description of the game we must specify the tie-breaking

rule. Although we ordinarily think of this as a �xed exogenous part of the

description of the model, in a continuum game with discontinuous payo�s this

leads to existence issues. Suppose, for example, in a �rst-price auction that one

bidder d bids Wd but is unwilling to bid more, while the other bidder −d is

willing to bid a greater amount W−d. If the tie-breaking rule is that each has a

50-50 chance of winning in case of a tie, then −d should not bid Wd, but just a

bit more in order to break the tie. Technically there is no number that is �a bit

more.� What is needed is a tie-breaking rule suited to the equilibrium: in this

case if −d bids Wd they should win for sure. Simon and Zame (1990) provide

5



a general theory of such endogenous tie-breaking rules, prove that equilibria

of this sort exist, and that they are the limits of �nite games with exogenous

tie-breaking rules. To proceed we de�ne the desire to bid as Bk as the most

the bidder desires to bid in order to get the prize for sure, that is, ck(Bk) = 1;

in the discontinuous case when ck(0+) > 1 we take Bk = 0. We de�ne the

willingness to bid as Wk ≡ min{Bk, bk}, with obvious interpretation. We can

now specify the tie-breaking rules. In the second price auction the tie-breaking

rule is simply that in case of a tie each bidder has a 50% chance of winning. In

both the �rst-price and all-pay auction there is an exceptional tie-breaking rule

at the top and at the bottom: except in these cases, in the event of a tie each

bidder has a 50% chance of winning. The exceptional tie-breaking rule at the

top speci�es that ifW−d > Wd and there is a tie at b−d = bd = Wd then −d wins
for sure. This tie-breaking rule re�ects the fact that −d could bid a little higher

and win for sure while d would not wish to do so. The exceptional tie-breaking

rule at the bottom speci�es that if ck(0+) > 0 and c−k(0+) = 0 and both bid 0

then k loses for sure since −k can raise the bid at minimal cost and k cannot.

Having completed the speci�cation of the game we now de�ne a strategy for

bidder k as a cdf Gk on [0,∞). Corresponding to this is a probability measure

and if B is a measurable set we will write Gk[B] for the probability of the set

according to that measure.

Finally, we specify the equilibrium concept. Nash equilibrium is not always

adequate for our purposes. We can illustrate the issues in the �rst price auction

where one bidder is willing to bid less than the other by introducing the notion

of bidder advantage: we say that bidder k is advantaged if Wk > W−k and use

the letter d for the other bidder who is disadvantaged. It is a Nash equilibrium

for the disadvantaged bidder to bid any amount greater than their willingness

to bid but less than the willingness to bid of the advantaged bidder and for the

advantaged bidder to bid the same with the endogenous tie-breaking rule that

the advantaged bidder wins. These equilibria make little sense as it is weakly

dominated for the disadvantaged bidder to bid more than their willingness to
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bid, and we wish to rule them out.7

Formally, we say that a bid is weakly dominated if there is another bid

which does at least as well with respect to all opponents bids, feasible or not,

and better with respect to some such bid. As indicated, we wish to restrict

attention to the case in which bidders do not make weakly dominated bids,

or what is the same thing, in which they submit only weakly undominated

bids. In a continuum game such as an auction there is a technical issue with

this assumption, namely that the set of weakly undominated bids need not be

closed: for example bidding the desire to bid Bk > 0 in a �rst price auction is

weakly dominated by making the weakly undominated bid of a bit less since

bidding your desire to bid guarantees getting nothing. Players choosing bids

from a set that is not closed leads to existence problems. For this reason we

de�ne the set of near weakly undominated bids to be the closure of the set of

weakly undominated bids, which is to say a bid is near weakly undominated if

it is either weakly undominated or the limit of weakly undominated bids. Our

equilibrium notion is then Nash equilibrium in near weakly undominated bids.

3. The Tripartite Auction Theorem

The tripartite auction theorem says that from the point of view of bidder

utility what happens in the second price auction is what happens in all auctions.

To make this precise, we �rst specify what we anticipate bidder utility to be in

the second price auction. By the second price auction utility we mean utility

in a second price auction in which bidder k bids �their value� Wk. This means

that an advantaged bidder −d with W−d > Wd gets 1− c−d(Wd) - the value of

the prize less the cost of matching the bid of the disadvantaged bidder - while

the other bidder d loses and gets nothing. If bidders have the same willingness

to bid with Wk = W−k = W > 0 then each has a half chance of winning and

paying the cost of the bid, so bidder k gets (1/2)(1 − ck(W )). Finally, when

Wk = W−k = 0 both bid zero and by assumption both get 0.

7Much of Bernheim and Whinston (1986)'s modeling of menu auctions revolves around
doing exactly this.
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The tripartite auction theorem does not always hold. Our �rst goal is to

specify a large class of auctions in which it does. We say that an auction is

standard if either one bidder is advantaged W−d > Wd or if they have equal

willingness to pay Wk = W−k = W and the constraints do not bind so that

Wk = W−k = Bk = B−k > 0. We say that entry is partially blocked if both

bidders have a positive �xed cost of entry and Wd = 0.

Theorem 1. [Tripartite Auction Theorem]

1. In a second price auction equilibrium utility is the second price auction

utility.

2. In a �rst price standard auction where entry is not partially blocked

equilibrium utility is the second price auction utility.

3. In an all-pay standard auction where entry is not partially blocked equi-

librium utility is the second price auction utility.

There is no mystery here about the case where entry is partially blocked.

The disadvantaged bidder bids 0 and gets zero. In the �rst price and all-pay

auction the advantaged bidder has to bid 0+, that is, pay the �xed cost, to win

and avoid getting nothing - recall that we have assumed it is pro�table to do

so. By contrast in the second price auction it is �ne to bid W−d > 0 as this

is a purely hypothetical bid, and the advantaged bidder wins without actually

having to pay the �xed cost. Hence the advantaged bidder does better in the

second price auction.

Proof of the Tripartite Auction Theorem

We prove the tripartite auction theorem by characterizing equilibrium strate-

gies and utilities for each type of auction.

Theorem 2. In the second price auction unique equilibrium each bidder bids her

willingness to bid Wk, so equilibrium utility is the second price auction utility.

Proof. The strategies follow from the fact that in a second price auction bidding

the willingness to bid weakly dominates all other strategies. The payo�s follow

directly; in particular Wk = W−k = 0 implies both have discontinuous cost so

when bidding zero the prize is not awarded.
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We turn to �rst-price auctions. Let bk ≡ inf{bk|ck(bk) > 0}: this is the

lowest bid that is not weakly dominated.8 Let Gk be the inf of the support of

Gk. We will make use of a Lemma proven as Lemma 1 in Appendix I.

Lemma. In any equilibrium of a �rst price auction:

1. Bids by k are in the range [bk,minWk].

2. If minWk > minGk then one bidder gets zero and the other bidder bids

minWk.

Equipped with this Lemma we can characterize equilibrium strategies and

utilities in �rst-price standard auctions.

Theorem 3. In any equilibrium of a �rst-price standard auction:

1. If Wd = 0 then the disadvantaged bidder d bids 0 and gets nothing while

the advantaged bidder −d bids 0+ and gets 1 − c−d(0
+). If −d's cost is also

discontinuous this is not equivalent to the second price auction where −d gets

1− c−d(0) > 1− c−d(0+), otherwise it is.

2. If W−d > Wd then −d bids Wd and d loses for sure and chooses Gd with

support in [bd,Wd] such that it is optimal for −d to bid Wd. One such strategy

is to bid Wd for certain. The advantaged bidder −d gets 1− c−d(Wd). Utilities

are equivalent to the second price auction.

3. If Wk = W−k = Bk = B−k one k bids minWk and the other k chooses Gk

with support in [bk,Wk] such that it is optimal for −k to bid minWk, and both

get zero. Utilities are equivalent to the second price auction.

Proof. We start from the �rst case: For Wd = 0 it must be that cd(0
+) > 1

(since we ruled out it being equal to 1), and by assumption then 1 > c−d(0
+).

Hence d must bid 0. If −d bids 0 then −d loses for sure because the prize is not
awarded. As 1 > c−d(0

+) it would be better to bid 0+ and needlessly costly to

bid more, so this is the equilibrium. The payo�s follow directly.

As we have already dealt with case (1) we may assume Wd > 0. If both

bidders bid minWk this is an equilibrium and we are done. Suppose instead

8Some useful facts are these: if ck(0
+) > 0 then bk = 0, bk > bk, Wk ≥ bk and if either ck

is continuous or ck(0
+) < 1 then Wk > bk. Also if W−d > Wd it must be c−d(0

+) < 1 (for
ck(0

+) ≥ 1 implies Wk = 0).
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that one bidder bids Gk with support in [bk,Wk]. If so Lemma 3 in Appendix II

implies minGk < minWk so from Lemma 3 one bidder gets zero and the other

bids minWk with probability 1. If W−d > Wd then −d does not get zero, so −d
is bidding minWk which means by the tie-breaking rule that d loses for sure. If

Wk = W−k = Bk = B−k then whichever k bids minWk also gets zero.

We now consider the case of a standard all-pay auction.

Theorem 4. In any equilibrium of a standard all-pay auction:

1. If Wd = 0 the strategies and payo�s are exactly as in the �rst price

auction.

2. If Wd ≤ b−d bids are bd = bd and b−d = b−d, hence d gets 0, and −d
gets 1 − c−d(Wd) = 1 − c−d(b−d) = 1. Utilities are equivalent to the �rst price

auction.

3. If Wd > b−d the advantaged bidder −d gets 1 − c−d(Wd) and the dis-

advantaged bidder gets 0. The range (max bk,minWk) is nonempty, and in

that open interval the strategies are given by Gd(bd) = 1 − c−d(Wd) + c−d(bd)

and G−d(b−d) = cd(b−d) while Gk(minWk) = 1. All remaining probability

is on {bd, b−d, 0+}. The disadvantaged bidder d has an atom at b−d of size

G0
d = 1 − c−d(Wd) + limbd↓max bk

c−d(bd). The advantaged bidder −d has an

atom at b−d if c−d(b−d) is continuous and at 0+ if not. The size of the atom is

G0
−d = limbd↓max bk

cd(bd). Utilities are equivalent to the �rst price auction.

While the detailed proof of the crucial third case is complex the idea which

dates back to Hillman and Riley (1989) is not. They studied the case of linear

cost and no bidding caps, but the case of strictly increasing continuous cost

with Wd < W−d, which is in Levine and Mattozzi (2020) is no more di�cult.

The idea is to deal �rst with low bids then with high bids. Low bids have to

be very near zero, for if not someone is losing almost for sure and bidding a

positive amount and would do better to bid zero. The near zero bidder must

be earning zero, and it must be the disadvantaged bidder since the advantaged

bidder can insure a positive utility by bidding a bit more than Wd. This is

the �rst half of equivalence: the disadvantaged bidder gets nothing. Then we

turn to the high bids. These have to be near Wd for if not the disadvantaged
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bidder can bid close to Wd and get positive utility. However, the disadvantaged

bidder cannot actually bid Wd with positive probability since then it would get

negative utility. Hence the advantaged bidder must be indi�erent to bidding

at Wd and winning for sure, which is exactly what they do in the winner-pays

auctions, hence the equivalence.

Proof. In the �rst case for Wd = 0 it must be that cd(0
+) > 1 (since we ruled

out it being equal to 1). Hence d must bid 0. Given this, the auction now

becomes a �rst price auction for −d.
In the second case by weak dominance neither bids more than minWk. If

W−d > Wd then for −d the tie-breaking rule means it is better to bid Wd rather

than higher because this guarantees a win. Note that here again without the

tie-breaking rule d might not have an optimal bid. Since b−d ≥ Wd > 0 then

c−d cannot be discontinuous for that would imply b−d = 0. Suppose then that

Wd ≤ b−d and c−d(b−d) is continuous. The unique equilibrium is bd = bd and

b−d = b−d, hence d gets 0, and −d gets 1. The third case we prove through a

series of Lemmas in Appendix I.

Example

To illustrate the key result which is Theorem 4 part (3) consider a symmetric

auction with �xed cost ck(0+) = 1/4 and ck(bk) = 1/4 + bk and non-binding bid

caps. Here willingness to bid for both bidders is Wk = 3/4 and neither bidder

is advantaged, both are disadvantaged. Each gets zero, and the equilibrium

strategies are given by the cdf Gk(bk) = 1/4 + bk that is, there is an atom at

0 of height 1/4. The expected cost is the probability of bidding of 3/4 times

the expected value of the �xed cost of 1/4 plus a uniform on [0, 3/4], which

is to say (3/4)((1/4) + (3/8)) = 15/32. The probability of winning is given

by the probability that the opponent does not bid of which is 1/4 time the

probability of bidding which is 3/4 plus the probability that both bid time 1/2

since conditional on both bidding each has an equal chance of bidding. This

is (1/4)(3/4) + (1/2)(3/4)(3/4) = 15/32, so that the probability of winning is

exactly the expected cost.
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4. Non-standard Auctions

In addition to the generic case of standard auctions we want to allow the non-

generic but important case of symmetry. In particular, we say that an auction

is weakly symmetric ifWj = W−j. The weakly symmetric case with non-binding

bidding caps we have already dealt with as these are standard. We say that

an auction is weakly symmetric with high stakes if both bidders have the same

strictly binding bidding cap bk = b−k with cj(bj) < 1 for both j. While weakly

symmetric with high stakes auctions are not generic, they are important. For

example, in the theory of voting, bidding caps are naturally interpreted as party

size and Downsian platform competition prior to the election may force equality

of party sizes. In the case of all-pay lobbying, as in Che and Gale (1998), the

bidding caps are equal because they are established by law and apply equally

to each lobbying group.

Not all auctions are standard or weakly symmetric with high stakes. We

say that a weakly symmetric auction is special if for one bidder j we have

cj(bj) ≤ 1, so that the bidding cap binds, and for the other we have b−j ≥
bj and c−j(bj) = 1. Special �rst price auctions are badly behaved: it is an

equilibrium for j to bid Wj and for −j to bid Wj with probability 1 ≥ π > 0

and Wj − ε with probability 1 − π where ε (dependent on π) is chosen so that

for j bidding Wj is at least as good as bidding slightly more than Wj − ε, that
is (1− π)(1− cj(Wj − ε)) ≤ (1− π/2)(1− cj(Wj)), equivalently

1− π
1− π/2

≤ 1− cj(Wj)

1− cj(Wj − ε)
.

Hence −j gets zero while j gets (1−π/2)(1−cj(bj)), that is any amount between

(1/2)(1−cj(bj)) and 1−cj(bj). By contrast in the second price auction the only

equilibrium is for both to bid W and for j to get (1/2)(1 − cj(bj)), so utility

equivalence fails rather badly.

On the other hand, special auctions require the terrible coincidence of one

bidder being indi�erent between winning and staying out at the other's bidding

cap so it makes sense to disregard them.

We conclude this discussion of types of auction by showing that among
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auctions satisfying our basic restriction that ck(0+) = 1 there are no other

cases.

Theorem 5. If an auction is neither standard nor special it is weakly symmetric

with high stakes.

Proof. Since the auction is not standard the bidders must have equal willingness

to bid Wk = W−k = W and the constraint must strictly bind for one of them,

that is, for one j we have cj(bj) < 1. This establishes that W = bj. Observe

that if c−j(bj) > 1 then W−j < bj so that weak symmetry is violated. Hence

we can have weak symmetry and cj(bj) < 1 only when c−j(bj) ≤ 1. Moreover,

we cannot have b−j < bj as this would violate weak symmetry. Hence, since the

auction is not special, c−j(bj) 6= 1, so c−j(bj) < 1. This means in addition that

if b−j > bj weak symmetry is violated. Hence b−j = bj = W , so the auction is

weakly symmetric with high stakes.

5. High Stakes in Weakly Symmetric Auctions

In this section we show that in weakly symmetric auctions with high stakes

the �rst and second price auctions are utility equivalent but the all-pay auction

is not. We can further classify these auctions into those for which there are very

high stakes in the sense that ck(bk) < 1/2 for both k and those in which there

are moderately high stakes in the sense that for at least one bidder j we have

cj(bj) > 1/2. In the latter case we make the additional generic assumption that

ck(bk) /∈ {1/2, (1 + ck(0+))/2} for either k. Our results show that in the very

high stakes case the all-pay auction gives lower utility to both bidders than the

winner-pays. The intuition here is the naive one: both have to pay instead of

just the winner, so they wind up paying more. By contrast in the moderately

high stakes case one bidder gets zero, less than in the winner-pays auctions, but

the other bidder may get either more or less.

Theorem 6. In weakly symmetric high stakes �rst or second price auction there

is a unique equilibrium and both bid bk = W and utility for k is (1/2)(1−ck(W )).

Proof. In the second price auction the equilibrium strategies are given by The-

orem 2.
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Turning to the �rst price auction, notice that both k must get positive utility

since by bidding W they get at least 1/2− (1/2)ck(bk). In a weakly symmetric

high stakes auction this is strictly positive. Hence Lemma 3 in Appendix II

shows that this implies W ≤ minGk, that is, neither can bid less than W .

From the equilibrium strategies each has a 1/2 chance of winning so the payo�s

follow.

We next turn to the all-pay auction. Our treatment generalizes that of Che

and Gale (1998) who study only linear cost functions. Recall that a weakly

symmetric high stakes auction has very high stakes if ck(bk) < 1/2 for both k.

Theorem 7. In a weakly symmetric very high stakes all-pay auction there is a

unique equilibrium, both bid bk = W and utility for k is 1/2− ck(W ).

Proof. Notice that both k must get positive utility since by bidding W they

get at least 1/2− ck(bk) > 0. Lemma 2 in Appendix I shows that then neither

can bid less than W . From the equilibrium strategies each has a 1/2 chance of

winning so the payo�s follow.

In these auctions, while the all-pay strategies are the same as in the winner

pays auctions, utility is strictly less since the bid has to be paid even when the

auction is lost.

We next study the remaining weakly symmetric high stakes case with mod-

erate stakes in the sense that for one bidder j we have cj(bj) > 1/2. In Lemmas

4, 5 and 6 in Appendix II we characterize the equilibria and payo�s for the

moderately high stakes case. For one part of the result we need the additional

generic assumption that ck(bk) 6= (1 + ck(0+))/2 . We de�ne a bid b̃k as as the

unique solution to ck(bk) = 2ck(W ) − 1 if ck(0+) < 2ck(W ) − 1 and b̃k = 0

otherwise.

A complete characterization of the weakly symmetric moderately high stakes

auction with ck(bk) /∈ {1/2, (1+ck(0+))/2} for either k can be found as Theorem
10 in Appendix II. It is summarized in the following Corollary:

Corollary 1. In a weakly symmetric moderately high stakes all-pay auction with

ck(bk) /∈ {1/2, (1 + ck(0+))/2} for either k, a bidder z that gets 0 in the all-pay
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auction gets strictly less than in the winner-pays auctions. If max b̃k > max bk

there is a unique equilibrium in which −z gets c−z(max b̃k) − (2c−z(W ) − 1),

otherwise −z gets c−z(0
+)− (2c−z(W )− 1).

This follows directly from Theorem 10. Notice that the utility of the favored

bidder−z is can be greater than the payo� in the winner-pays auctions (1/2)(1−
c−z(W )), for example if c−z(W ) is close to zero. It can also be less, for example,

if b̃z = b̃−z and both bidders get zero.

Example revisited

Consider again a symmetric auction with �xed cost ck(0+) = 1/4 and

ck(bk) = 1/4 + bk now with a symmetric bid cap of 5/8 so that the auction

is not standard and has moderately high stakes. Willingness to bid for both

bidders remainsWk = 3/4. We calculate 2ck(W )−1 = 2((1/4)+(5/8))−1 = 3/4

so that b̃k = 1/2. Hence by Corollary 1 there is a unique equilibrium - obviously

symmetric, and according the theorem each gets zero. Note here the failure of

the tripartite auction theorem. In the all pay auction both get zero. In the

winner pays auctions both bid the cap of 5/8 and each has a 50% chance of

paying that bid and winning the prize worth one: hence each gets utility 3/16.

The equilibrium strategies are given in Theorem 10 in Appendix II. In

[0, 1/2) they are given by Gk(bk) = 1/4 + bz with the remaining probability

of 1/4 at the bid cap of W = 5/8. Notice how in the symmetric moderate

stakes auction there is a gap between (1/2, 5/8) in which neither bidder bids,

while, as was the case with non-binding bid caps, the �xed cost leads also to an

atom at zero.

6. Revenue and Welfare Considerations

We turn now to the more standard question in auction theory, that of revenue

equivalence. That is, so far we have been considering the utility of the parties.

What happens with the bids? Even for elections, politicians and some others

seem to feel that high turnout, that is, high revenue as measured by the number

of votes, is a vindication of democratic ideals or something like that, or, in the

case of politicians, they simply view it in much the same way as athletes who like
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a larger audience. In the case of bribes, whether in the form of lavish dinners or

high paying low responsibility jobs either for relatives or after the fact, the bids

are to an extent a transfer payment, so the revenue is not entirely lost. Hence,

from an e�ciency point of view, given that the parties are indi�erent between

the di�erent types of auctions, higher expected revenue is welfare improving.

Hence we now take the point of the auctioneer and ask which auction yields the

highest expected revenue?

The �rst price auction and second price auction are easily seen to yield the

same revenue - this is the standard revenue equivalence result in the simplest

case of known values. If 1 > c−d(0
+) > 0 andWd = 0 the winner incurs a greater

cost but still pays nothing to the auctioneer; in the other cases the winning bid

is the same for both auctions, so in all cases the auctioneer gets minWk. Note

that the second price auction is more e�cient than the �rst price auction when

it avoids an unnecessary �xed cost. What about the all pay auction?

To get a bit of intuition recall from Theorem 4 that the equilibrium cdfs in

the all pay auction are roughly given by the opponents cost plus their utility.

If the cost - and so the cdf - is convex then the density is downwards sloping

meaning that bids tend to be low, while if it is concave then the density is

upwards sloping meaning that bids tend to be high. Hence we might expect

that convexity also means low revenue, while concavity means high revenue.

Our next result addresses the convex case and shows that this intuition is exact.

Theorem 8. In a standard auction

1. if Wd = 0 or Wd = W−d and ck(bk) is linear for both k then the all-pay

auction is expected revenue equivalent to the �rst price auction. Otherwise

2. if ck(bk) is convex for both k then the all pay auction yields strictly less

expected revenue than the �rst price auction.

Proof. If Wd = 0 we already observed in Theorem 4 that the all pay auction is

the same as the �rst price auction so certainly yields the same expected revenue.

We treat the remaining cases.

Let b̃k be the random variable on [0,Wd]∪{0+} that is the equilibrium bid of

k in the all pay auction and let pk represent k's equilibrium chance of winning.

From Theorem 4 −d gets 1−c−d(W ) so 1−c−d(W ) = p−d−Ec−d(b̃−d). Similarly
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as d gets 0 we have 0 = pd − Ecd(b̃d). Adding these together we see that in

equilibrium c−d(Wd) = Ec−d(b̃−d) + Ecd(b̃d). Dividing through by c−d(Wd) as

this is certainly positive we can write this as

Ec−d(b̃−d)

c−d(W )
W +

cd(Wd)

c−d(Wd)

Ecd(b̃d)

cd(Wd)
Wd = Wd

where we know that Wd is the revenue from the �rst price auction. Moreover,

if ck(bk) is (weakly) convex since ck(0) = 0 it follow that ck(bk) ≥ ck(Wd)bk/Wd

including for bk = 0+ with strict inequality unless ck(bk) is linear. We may write

this as

bk ≤
ck(bk)

ck(Wd)
Wd (6.1)

so that

Eb̃−d +
cd(Wd)

c−d(Wd)
Eb̃d ≤ Wd (6.2)

with strict inequality if either ck(bk) fails to be linear. Recalling that this is

a standard auction, in the symmetric case cd(Wd) = c−d(Wd) and with linear

cost this holds with equality which is the second part of (1). Otherwise the

inequality is strict.

What about the concave case? To start with, the reverse result is not true.

The inequality 6.1 is reversed so the revenue inequality 6.2 is reversed reading

Eb̃−d +
cd(Wd)

c−d(Wd)
Eb̃d ≥ Wd

but while concavity pushes revenue in favor of the all pay auction, this is not

enough because of the term cd(Wd)/c−d(Wd) which is less than one unless the

auction is symmetric. Roughly speaking the more asymmetric is the auction

the greater the concavity needed in cost for the all pay auction to generate more

revenue that the �rst price auction. In one important special case we can make

this trade-o� explicit.

We say the −d has a homogeneous cost advantage over d if c−d(b−d) =

νcd(b−d) with ν < 1. De�ne Ω = (1/Wd)
∫Wd

0
cd(bd)dbd. This is a measure of

the convexity of cd(bd). In fact, Ω = 1/2 if cd(bd) is linear, Ω > 1/2 if cd(bd) is

17



strictly convex, and <1/2 if cd(bd) is strictly concave.

Theorem 9. In a standard auction if −d has a homogeneous cost advantage,

bd = 0 and ck(bk) is concave for both k, the all pay auction generates more

expected revenue than the �rst price auction if and only if

Ω <
ν

1 + ν
cd(Wd).

Note that the RHS is no greater than 1/2. We see from this that there are

two forces working against revenue in the all pay auction: the RHS is increasing

in ν so less symmetry, meaning smaller ν requires greater concavity meaning

smaller Ω. Second, the RHS is increasing in cd(Wd) so that when the constraint

binds on d and cd(Wd) < 1 greater concavity is also required.

Proof. With a homogeneous cost advantage bd = b−d so both are zero. Con-

cavity implies ck(0+) = 0. Hence from Theorem 4 Gd[{0}] = 1 − c−d(Wd)

and 1 − G−d[{Wd}] = cd(Wd) and these are the only atoms. Moreover in

(0,Wd) we have G−d(b−d) = cd(b−d) and Gd(bd) = c−d(bd) + 1 − c−d(Wd). In-

tegrating by parts we have Eb̃−d =
∫Wd

0
[1− cd(b−d)] db−d = Wd − ΩWd and

Eb̃d =
∫Wd

0
(c−d(Wd)− c−d(bd))dbd = Wdc−d(Wd)− νΩWd. Adding up we get

Eb̃−d + Eb̃d = (1− Ω + νcd(Wd)− νΩ)Wd

Hence the all pay auction generates more expected revenue than the �rst price

auction exactly as stated.

7. Conclusion

In the spirit of Konrad Mierendor� this paper is a theory paper: it is not

about a �killer-app� but rather provides set of tools for analyzing the important

case of two bidder auctions under complete information. The intention, of

course, is that these results will be used in applications, perhaps in ways that

we cannot foresee.

Although this is not the purpose of this paper there are economic conclu-

sions to be drawn from these results and we conclude by mentioning some of
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these. First, there is a long literature about the fact that small groups have

an advantage in lobbying9 - while the opposite is the case in voting.10 Pay-

ments to politicians, when they are not direct cash payments, are typically in

the form of employment contracts after leaving o�ce, book deals, employment

for spouses, and so forth11 - and these are only paid by the winner. Empirically,

then, lobbying is typically a winner pays auction, while, of course, voting is an

all pay auction. In principle this di�erence in mechanism might favor either

larger or smaller groups: but the results here show that this is not the case -

we have shown that only in very special circumstances do the consequences of

the auction mechanism make a di�erence to the utility of the bidders. Hence

we must look elsewhere to explain why small groups excel at lobbying and large

groups in elections. Second: the reason for the di�erence in mechanisms should

be clear - again, except under special circumstances, the winner pays auctions

generate more revenue than the all-pay auction, so naturally politicians have an

incentive to employ the former rather than the latter.

9See Olson (1965).
10See Levine and Mattozzi (2020)
11See Levine, Mattozzi and Modica (2022)
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Appendix I: All-Pay Auction Proofs

We now develop the key properties of the all-pay auction that lead to The-

orem 4.

Lemma 1. In any equilibrium of a �rst price auction:

1. Bids by k are in the range [bk,minWk].

2. If minWk > minGk then one bidder gets zero and the other bidder bids

minWk.

Proof. By weak dominance bk ≤ Wk and bk ≥ bk. In no case does either bid

more than minWk. If W−d > Wd then the tie-breaking rule means it is better

for −d to bid Wd than higher because this guarantees a win. Note that without

the tie-breaking rule d might not have an optimal bid. IfW−d = Wd this follows

from bk ≤ Wk. This proves (1).

Suppose minWk > minGk. If there is a k such that ck(bk) is discontinuous

and k plays 0 with positive probability, since a 0 bid yields zero for sure (either

because c−k(0+) = 0 or because both are discontinuous and if both bid zero

the prize is not awarded) then k gets 0. Suppose on the contrary that a k

with discontinuous ck (if any) does not play zero with positive probability. If

minGk = 0 it cannot be that both have an atom at 0+ since it would be better

to bid a bit more. For the same reason, if minGk > 0 it cannot be that both

have an atom at minGk > 0. Suppose that −k has no atom at 0+ if minGk = 0

or at minGk > 0. If Gk > minGk then −k gets zero. If Gk = minGk then

k bidding down to Gk and −k having no atom there implies that k gets zero.

The reason is that k is bidding with positive probability in any interval (Gk, bk]

and those bids win with probability at most G−k(bk)→ 0 as bk → Gk. Finally,

suppose that k gets zero. If −k bids less than minWk then k would have a bid

giving a positive payo�, so −k must bid minWk with probability 1.

Lemma 2. In an all pay auction with b−d < Wd ≤ W−d

1. Bids are either min bk, 0
+ or in the range [max bk,minWk] and in partic-

ular Gk(minWk) = 1.

2. In the non-empty range (max bk,minWk) there can be no atoms and

bidder k with bk < b−k cannot have an atom at b−k.
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3. Unless both have an atom of size 1 at minWk one of the two bidders

must get zero and there is a G such that there can be no open interval with zero

probability for either bidder in (max bk, G), and [G,minWk) has zero probability.

If one does not have an atom at minWk then G = minWk and in particular

each bidder must bid arbitrarily close to max bk and minWk.

4. Suppose that Wd = W−d and for one k we have ck(bk) > 1/2. Then both

do not have an atom of size 1 at minWk. If the auction is a standard one then

both do not have an atom at minWk.

Proof. 1. The hypothesis b−d < Wd ≤ W−d implies that Wk > 0 for both k.

This implies ck(0+) < 1 so Wk > bk. By weak dominance we may assume there

are no bids bk ∈ [0, bk) as these are weakly dominated by bk. By weak dominance

we may assume that bk ≤ Wk since bk > Wk is weakly dominated by bidding 0.

After applying weak dominance we are free to apply iterated strict domi-

nance as this does not eliminate any equilibrium strategies. By strict domi-

nance we may assume that bk ≤ W−k since bk > W−k is strictly dominated by

bk − (bk −W−k)/2. In particular Gk(minWk) = 1 as asserted. By strict dom-

inance we may assume there are no bids bid bk for which bk < bk < b−k since

b−k ≥ b−k so that such bids are costly but losing.

Putting this together, we may restrict bids bk to be either min bk, 0
+ or in

the range [max bk,minWk]. By assumption Wk > b−k for both bidders. Since

Wk > bk this implies (max bk,minWk) is nonempty.

2. In the range (max bk,minWk) there can be no atoms by the usual ar-

gument for all-pay auctions: if there was an atom at bk then bidder −k would

prefer to bid a bit more than bk rather than a bit less, and since consequently

there are no bids by −k immediately below bk bidder k would prefer to choose

the atom at a lower bid. It is also the case that a bidder k with bk < b−k cannot

have an atom at b−k. If −k has an atom there, then k should increase its atom

slightly to break the tie. If −k does not have an atom there, then k should shift

its atom to bk since it does not win either way.

3. Assume it is not the case that both bidders have an atom of size 1 at

minWk.

Let Gk ≡ inf{bk|Gk ((bk,minWk)) = 0} - this is basically the highest bid by
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k with positive probability - and G = maxkGk. We observe that in (maxk bk, G)

there can be no open interval with zero probability from either bidder. If bidder

k has such an interval, then bidder −k will not submit bids in that interval

since the cost of the bid is strictly increasing so it would do strictly better to

bid at the bottom of the interval. Hence there would have to be an interval in

which neither bidder submits bids. But then, for the same reason, it would be

strictly better to lower the bid for bids slightly above the interval. This implies

that if G > max bk each bidder must bid arbitrarily close to maxk bk.

We can now show that one of the two must get zero. Denote by B ≡
{bd, b−d, 0+}. If G > max bk both must bid arbitrarily close to max bk. If

G = max bk since both do not have an atom of size one at minWk one must

put positive weight on the set B. If only one does so they get zero, so we may

assume both do so.

Suppose �rst that max bk > 0 or both have continuous cost. From (2) a

bidder k with bk < b−k cannot have an atom at b−k. If bk = b−k > 0 or both

have continuous cost both cannot have an atom at bk since both would like to

bid a bit more.

If G > max b` since one k has an opponent without an atom at max b` and

(Gk,minWk) has zero probability, then bidding down to max b` bidder k can get

more than zero only if −k has positive probability of playing less than max b`;

this implies that max b` = bk and that −k gets zero since her bids below bk lose

for sure and have positive probability.

If G = max bk then both must have a positive probability of playing B so

for one k it must be that bk = max bk so k has an atom there. This means that

−k does not so loses for sure and gets zero.

Suppose now that max bk = 0 and that k has a discontinuous cost. If k bids

0 with positive probability then k gets zero, so we may assume this is not the

case. Hence if −k bids 0 with positive probability then −k gets 0 so we may

assume neither has an atom at 0. They cannot both have an atom at 0+ so one

` has an opponent without an atom there. If G = 0 then ` should not bid 0+

since this loses for sure. This implies that ` has an atom of size 1 at minkWk

and since −` does not −` has a bid that loses for sure, so cannot get more than
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0 so −` must get 0. If G > 0 then ` bidding down to zero must get zero.

This establishes that unless both have an atom of size 1 at minWk one must

get zero.

Suppose that one does not have an atom at minWk. If neither has an

atom and G < minWk then each can get can get a positive utility by bid-

ding (minWk + G)/2, contradicting the fact that one must get zero. If k has

an atom and −k does not and G < minWk then k should move their atom to

a lower bid.

4. Suppose in addition that either W−d > Wd or if Wd = W−d then for one

k we have ck(bk) > 1/2. Then both do not have an atom of size 1 at minWk. If

in fact the auction is a standard one then both to not have an atom at minWk.

Suppose that Wd = W−d and for one k we have ck(bk) > 1/2. If both have

an atom of size one at minWk then k has a negative utility. So this is ruled out.

If W−d > Wd and −d has an atom at minWk then d loses for sure so has

negative utility. The other standard auction case is Wk = W−k = Bk = B−k

so if both have an atom both get negative utility because the probability of

winning Bk is less than one, while the probability of paying Bk is one. This

shows that in the standard case both do not have an atom.

Next we prove Theorem 4.

Proof. In both cases from Lemma 2 (3) and (4) G = minWkso both must bid

arbitrarily close to minWk.

If W−d > Wd then −d can get û−d = 1− c−d(Wd) > 0 by bidding Wd. Hence

it must be −d that gets zero. On the other hand −d cannot get more than

this as they must bid arbitrarily close to Wd so must get less than or equal

this amount. In the symmetric case each k must bid arbitrarily close to Wk so

cannot get a positive amount.

We now �nd the equilibrium strategies. From the absence of zero probability

open intervals in (max bk,minWk) it follows that the indi�erence condition for

the advantaged bidder −d is

Gd(b−d)− c−d(b−d) = 1− c−d(Wd)
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must hold for at least a dense subset. For the disadvantaged bidder we have

G−d(bd)− cd(bd) = 0

for at least a dense subset. This uniquely de�nes the cdf for each bidder in

(max bk,minWk):

Gd(bd) = 1− c−d(Wd) + c−d(bd)

and

G−d(b−d) = cd(bd)

As these are di�erentiable they can be represented by continuous density func-

tions which are by taking the derivative.

The remaining probability mass must be on B = {bd, b−d, 0+}. If d has an

atom at 0+then −d does not.

If −d gets positive then −d does not have an atom at 0, In this case d must

have an atom at bd which must lose for sure. This means that for −d the mass

is on either b−d or if c−d(b−d) is discontinuous, on 0+. Note that in the case

where b−d < bd so the advantaged bidder has less of a head start advantage than

d it could only be the case that −d had an atom at b−d if −d was also getting

zero. However, in this case we see that G−d(max bk) = G−d(bd) = cd(bd) = 0 so

in fact −d places no probability on B.

If both get 0 and b` > 0 for some ` then each k must put their mass on bk.

Finally if both get 0 and bk = b−k = 0 then Gk(0+) = c−k(0+) each must

put their mass on zero, otherwise the other would strictly prefer 0+.

We may compute the size of these atoms from the excess probability mass

from Gk as G
0
d = 1−c−d(Wd)+c−d(max bk) and G0

−d = cd(max bk). In particular

if max bk = bd then G
0
−d = 0, otherwise G0

−d = cd(b−d) which means if d bids b−d

and wins for sure that d gets 0. Moreover if c−d(b−d) is discontinuous so that

b−d = 0 then max bk = bd so there is no atom.

Appendix II: Weakly Symmetric Moderately High Stakes Auctions

Here we prove
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Theorem 10. In a weakly symmetric moderately high stakes auction with ck(bk) 6=
1/2 for either k:

1. if max b̃k > max bk there is a unique equilibrium. Choose z ∈ {1, 2} so
that b̃z ≥ b̃−z. Then z gets zero and −z gets û−z = c−z(max b̃k)−(2c−z(W )−1).

At W there are atoms Gk[{W}] = 2(1− c−k(W )− û−k). In (max bk,max b̃k) the

equilibrium strategies are given by Gz(bz) = c−z(bz)+ ûz and G−z(b−z) = cz(bz).

All remaining probability is on {bz, b−z, 0+}. Bidder z has an atom at b−z.

Bidder −z has an atom at b−z if c−z(b−z) is continuous and at 0+ if not. The

size of the atoms are G0
−k = limbk↓max b`

ck(bk) + ûk.

If max b̃k ≤ max bk but ck(bk) 6= (1 + ck(0+))/2 for both k then

2. if c−j(b−j) > 1/2 there are three equilibria. In one both bidders get zero

and have an atom at W of Gk[{W}] = 2(1 − c−k(W )), with the remaining

probability at 0. For each bidder z there is an equilibrium in which z gets 0

and −z gets û−z = c−z(0
+) − (2c−z(W ) − 1). Bidder −z has G−z[{W}] =

2(1− cz(W )) with the remaining probability at 0+ while Gz[{W}] = 2(c−z(W )−
c−z(0

+) with the remaining probability at 0.

3. if c−j(b−j) < 1/2 there is a unique equilibrium in which j gets 0 and −j
gets û−j = c−j(0

+)− (2c−j(W )− 1). Bidder −j has G−j[{W}] = 2(1− cj(W ))

with the remaining probability at 0+ while Gj[{W}] = 2(c−j(W )− c−j(0+) with

the remaining probability at 0. This is the same as the second type of equilibrium

in case (2) in which z = j.

The proof proceeds through a series of Lemmas.

Lemma 3. In a weakly symmetric moderately high stakes auction with ck(bk) 6=
1/2 for either k, both have an atom at W of size less than one, one bidder, z,

gets zero and there is a G < W such there can be no open interval with zero

probability for either bidder in (max bk, G) and [G,W ) has zero probability. If

ûk are the equilibrium utilities the size of the atoms are given by Gk[{W ]} =

2(1− c−k(W )− û−k).

Proof. By de�nition for some j we have cj(W ) > 1/2. The parts that do not

follow directly from 2 and 3 are that both must have an atom, the size of the

atoms, and that G < W . Observe that the utility to −k from bidding W is
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û−k = 1 − Gk[{W}] + Gk[{W}]/2 − c−k(W ) = 1 − Gk[{W}]/2 − c−k(W ). We

may write this as Gk[{W ]} = 2(1 − c−k(W ) − û−k), the result for the size of

the atom. Since ûz = 0 it follows that G−z[{W ]} = 2(1 − cz(W )) > 0 so that

−z has an atom. If z does not have an atom then G = W otherwise −z would

lower their atom a bit. The result will follow from G < W .

The intuition for G < W is this. In the asymmetric case where the con-

straints bind z = d the disadvantaged bidder. Although −z has an atom at W

if z were to try to bid minWk then the tie-breaking rule means that z would

lose for sure re�ecting the fact that −d is willing to bid a bid more than minWk

and d is not. Here, however, neither is able to bid more than W , so if z bids

W they win with probability 1−G−z{[W ]}/2 > 1/2 and this is a substantially

higher probability than bidding just below W .

Speci�cally if G = W there must be a sequence of bids by z approaching W

with zero utility. That is, these bids have cost nearly cz(W ) and have very little

chance of losing except to the atom by −z at W . Speci�cally as bz ↑ W it must

be that 1−G−z[{W}]− cz(bz)→ 0. Since cz is continuous at W > 0 it follows

that 1−G−z[{W}]− cz(W ) = 0. Hence for bidding W we �nd that z gets

1−G−z[{W}]/2− cz(W ) = 1− (1− cz(W ))/2− cz(W ) = (1/2)(1− cz(W )) > 0

which contradicts the fact that z must not get more than zero from any bid. It

follows that G < W . This in turn shows that −z has an atom at W .

Lemma 4. In a weakly symmetric moderately high stakes auction with ck(bj) 6=
1/2 for either k, the equation ck(bk) = 2ck(W )−1 has a unique solution b̃k > bk

if and only if ck(W ) > 1/2 and ck(0+) < 2ck(W )− 1.

Proof. If ck(W ) < 1/2 then ck(bk) = 2ck(W ) − 1 has no solution. Otherwise,

the LHS is strictly increasing and continuous for bk > bk and limbk↓bk ck(bk) =

max{ck(0+), ck(bk)}. Certainly ck(bk) = 0 < 2ck(W ) − 1, while ck(W ) >

2ck(W )− 1, so the former is the condition for a solution.

Lemma 5. A weakly symmetric moderately high stakes auction with ck(bj) 6=
1/2 for either k has an equilibrium with G > max bk if and only if max b̃k >

max bk, in which case it is unique, there is a bidder z satisfying b̃z ≥ b̃−z who

28



gets zero and û−z = c−z(max b̃k) − (2c−z(W ) − 1). At W there are atoms

Gk[{W ]} = 2(1 − c−k(W ) − û−k). In (max bk, G) the equilibrium strategies

are given by Gz(bz) = c−z(bz) + ûz and G−z(b−z) = cz(bz). All remaining

probability is on {bz, b−z, 0+}. bidder z has an atom at b−z. bidder −z has an

atom at b−z if c−z(b−z) is continuous and at 0+ if not. The size of the atoms are

G0
−k = limbk↓max b`

ck(bk) + ûk. If max b̃k > max bk there is no other equilibrium.

In case c−j(b−j) < 1/2 then z = j.

Proof. First we show that an equilibrium with G > max bk also has G = max b̃k,

then �nish the proof by constructing the unique equilibrium when max b̃k >

max bk.

Assume that G > max bk. Observe by Lemma 2 there are no atoms in

(max bk,W ), and since G > max bk both must bid up to G. In particular

when z bids at G then z gets (1 − G−z[{W ]}) − cz(G)) = 0 while by Lemma

3 G−z[{W ]} = 2(1 − cz(W )), so (2cz(W ) − 1) − cz(G)) = 0, and in particular

G = b̃z. Notice this shows that the bidder z that gets zero must be one for whom

cz(W ) > 1/2. Moreover, at G we have that (1−Gz[{W ]})− c−z(G)) = û−z and

Gz[{W ]} = 2(1− c−z(W )− û−z) giving (2c−z(W ) + 2û−z − 1)− c−z(G)) = û−z

or û−z = −(2c−z(W ) − 1) + c−z(G) ≥ 0. Hence it must be that c−z(G) ≥
2c−z(W )− 1 which since c−z(b−z) is strictly increasing in b−z for bz > bz means

that G ≥ b̃−z. Note that if −z has c−z(W ) < 1/2 then c−z(G) ≥ 2c−z(W )− 1 is

always satis�ed and in this case by de�nition we have b̃−z = 0. Hence indeed the

bidder getting zero must satisfy b̃z ≥ b̃−z and û−z = −(2c−z(W )− 1) + c−z(G)

as asserted.

Now assume that G = b̃z ≥ b̃−z. The construction of equilibrium proceeds

much as in the proof of Theorem 4. The atoms at W are given by Lemma 3.

Between [G,W ) the cdfs are �at. In (max bk, G) the indi�erence condition for

−z is

Gz(b−z)− c−z(b−z) = û−z

must hold for at least a dense subset. For bidder z we have

G−z(bz)− cz(bz) = 0
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for at least a dense subset. This uniquely de�nes the cdf for each bidder in

(max bk,minWk) as given in the result.

The argument concerning B = {bz, b−z, 0+} is exactly as in the proof of

Theorem 2 replacing d with z.

Finally, we show that there is no other equilibrium if max b̃k > max bk.

Observe that ifG = max bk then ` bidding b` > max bk earns (2c`(W}−1+2û`)−
c`(b`)) which is greater than û` for max bk < b` < b̃`. Hence G > max bk.

Lemma 6. In a weakly symmetric moderately high stakes auction with ck(bk) /∈
{1/2, (1 + ck(0+))/2} for either k, suppose that max b̃k ≤ max bk. Then there

are three possible types of equilibria. In one both get zero, have an atom at W of

Gk[{W ]} = 2(1− c−k(W )) with the remaining probability at 0. For each z there

is an equilibrium in which z gets 0 and −z gets û−z = c−z(0
+)− (2c−z(W )− 1).

bidder −z has G−z[{W ]} = 2(1 − cz(W )) with the remaining probability at

0+while Gz[{W ]} = 2(c−z(W )− c−z(0+) with the remaining probability at 0. If

c−j(b−j) > 1/2 then all three types co-exist. If c−j(b−j) < 1/2 the only the latter

type exists, and only for z = j, so it is unique.

Proof. The only case in which max b̃k > max bk fails is if ck(0+) > 2ck(W ) − 1

for both k so max bk = 0. In this case G = 0 from Lemma 5.

Each k faces probability 1−G−k[{W}] = 2ck(W )−1+2ûk) of −k playing in
{0, 0+}. Bidder z therefore cannot bid 0+ since even if −z was not bidding 0+

it would still create a loss for k to bid 0+. This implies that if c−j(b−j) < 1/2

then z = j.

There are now two possibilities. If c−j(b−j) > 1/2 it is an equilibrium for

−z also to get zero and bid zero for the same reason.

There is also an equilibrium where û−z > 0 in which case −z must bid 0+

but not 0. In this case we must have 2c−z(W ) − 1 + 2û−z − c−z(0
+) = û−z

giving û−z = c−z(0
+)− (2c−z(W )− 1) and Gz[{W ]} = 2(1− c−z(W )− û−z) =

2(c−z(W )− c−z(0+).
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