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1. Introduction

Two themes of Nicholas Yannelis's scienti�c work are the importance of
fundamental results of practical importance and the insistence that they not
depend upon special or arbitrary assumptions. So, for example, his work on the
existence of competitive equilibrium with large commodity spaces in Yannelis
and Zame (1986) does not rest upon arbitrary assumptions about preferences,
but it does include the commodity spaces which are important to economists.
This paper is about political economy rather than competitive equilibrium, but
the analysis and results are in the spirit of Nicholas Yannelis.

The model of two contestants exerting e�ort to win a prize is a common
one - and of particular importance in the political economy of con�ict, such as
voting or lobbying. A key element of the analysis is the contest success function
giving the probability of winning as a function of the e�ort of the contestants.
This function plays as fundamental a role in the theory of contests as does the
production function in the theory of the �rm, yet little about it has been studied.
This paper seeks to remedy that gap.

Assumptions about the contest success function vary. In the all-pay auction
the greatest e�ort wins the prize. The widely used Tullock function supposes
that the chance of winning is proportional to e�ort. A great deal is known about
the unique mixed strategy equilibrium in the all-pay auction and a great deal is
known about pure strategy equilibria when they exist in the Tullock case. The
problem is that equilibrium generally involves mixed strategies and except in
the case of the all-pay auction very little is known about the structure of mixed
strategy equilibria. Here we address the basic question of when it is that lower
cost of e�ort results in greater success - that is a greater probability of winning
or a greater payo� - across equilibria and contest success functions.

In the spirit of Nicholas Yannelis we do not assume particular functional
forms. Rather, we allow general contest success functions of the type that are
important to economists including the possibility that there is a discontinuous
probability of winning when there is a tie, and we allow for general continuous
cost functions. We show that Nash equilibria always exist. We take as our
measure of success of a contestant her equilibrium utility as a fraction of the
prize - that is, how close the contestant is to achieving the goal of winning the
prize at no cost.

We observe �rst that when the contest success function is continuous and
costs are high enough, there will be a unique equilibrium in which neither con-
testant chooses to provide any e�ort so that lower cost does not provide greater
success. More generally, we should be concerned that it might be the case - as
it is in the war of attrition - that there can be pre-emptive equilibria in which
the higher cost contestant provides a high e�ort and by doing so discourages the
lower cost contestant. Then, we prove three main results. First, there cannot
be a pre-emptive equilibrium in which the higher cost contestant has greater
success. Second, a contestant with a su�ciently great cost advantage always
has greater success. Finally, if the cost advantage is a homogeneous one, then
the lower cost contestant always has greater success.
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As an application we study contestants representing groups of di�erent sizes
competing for a common prize with identical per capita cost technology. We
show that when the marginal cost of e�ort is increasing, the large group has
greater success, while when there are decreasing marginal cost of e�ort the small
group has greater success. We further study the robustness of equilibrium by
proving a basic upper hemi-continuity result. The underlying mathematics de-
rives from the study of the convergence of monotone functions on rectangles.
This enables us to conclude, for example, that contest success functions that
converge pointwise to the all-pay auction do not have pure strategy equilib-
ria. More broadly it shows that greater success is a robust property shared by
neighboring contest success functions.

A fundamental result of Whitney (1934) enables us to approximate dis-
continuous contest success functions by real analytic contest success functions.
This is important because most functional forms used by economists are real
analytic. Remarkably, considering that little is known in general about mixed
strategy equilibria in games with a continuum of actions, we establish that when
the contest success function is real analytic, the support of mixed strategy equi-
libria must be �nite. Hence, for example, if the contest success function is the
normal cumulative distribution applied to the di�erence in e�ort levels, and
the variance decreases to zero so that the contest success function approaches
the all-pay auction, then equilibria have �nite support converging weakly in the
limit to the continuous uniform distribution that is the unique equilibrium of
the all-pay auction.

2. The Model

Two contestants j ∈ {1,−1} compete for a prize worth Vj > 0 to contestant
j. Each contestant chooses an e�ort level ej ≥ 0. The probability of contestant
j winning the prize is given by a contest success function 0 ≤ p(ej , e−j) ≤ 1
that depends on the e�orts of the two contestants and not on their names.

The contest success function is assumed to be continuous for ej 6= e−j ,
non-decreasing in ej , and it must satisfy the symmetry condition p(ej , e−j) +
p(e−j , ej) = 1. Note that we allow for a discontinuous upward jump in the
winning probability when we move away from ej = e−j , but require that when
there is a tie the probability of winning is 1/2. Two standard contest resolution
functions have this type of discontinuity: the all-pay auction in which the highest
e�ort wins for sure and the Tullock function where the probability of winning
is given by ej/(ej + e−j) which is discontinuous when there is a tie at zero.

The cost of e�ort ej is Vjcj(ej) and it is incurred regardless of the outcome
of the contest. The function cj(·) measures cost relative to the value of the
prize Vj > 0. We assume that cj(·) is continuous, non-decreasing, it satis�es
cj(0) = 0, and for some wj called the willingness to bid cj(wj) = 1. To avoid
degeneracy we assume that for contestant −1 the cost function c−1(·) is strictly
increasing at the origin.

Since choosing e�ort higher than the willingness to bid is strictly domi-
nated by choosing zero e�ort, we may restrict the choice of e�ort to [0,W ],
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where W ≥ max{wj , w−j}. Hence, a strategy for contestant j is a cdf Fj on

[0,W ]. De�ne p(Fj , F−j) ≡
´W

0

´W
0
p(ej , e−j)dFj(ej)dF−j(e−j) and cj(Fj) ≡´W

0
cj(ej)dFj(ej). A Nash equilibrium is a pair of strategies (Fj , F−j) such that

for each contestant j and all strategies F̃j we have

p(Fj , F−j)− cj(Fj) ≥ p(F̃j , F−j)− cj(Fj).

Since this is an expected utility model this de�nition is equivalent to restricting
deviations to pure strategies ej .

Existence of Equilibrium

As we allow for discontinuities in p(ej , e−j) along the diagonal where ej =
e−j it is useful to have a measure of the discontinuity.

De�ne
p+(e) = lim

ε→0
sup

k∈{1,−1},|ek−e|≤ε
p(e1, e−1).

This is the greatest chance of winning for any e�ort pair (ej , e−j) close to (e, e).
In particular p+(e)− 1/2 is zero at a point of continuity and positive at a point
of discontinuity. There is a simple way of computing p+(e):

Lemma 1. p+(e) = limε→0+ p(e+ ε, e).

Proof. By de�nition p+(e) ≥ limε→0+ p(e+ ε, e). We show that in fact p+(e) ≤
p(e + ε, e) so that the opposite inequality holds as well. Let enk → e be such
that p(enj , e

n
−j) → p+(e). Fix e + ε. For n su�ciently large enj < e + ε. Hence

p(e + ε, en−j) ≥ p(enj , e
n
−j). Consider the limit as n → ∞. Since p(e + ε, e) is a

point of continuity of p(ej , e−j) we have lim p(e+ ε, en−j) = p(e+ ε, e) while by
de�nition p(enj , e

n
−j)→ p+(e). Hence p+(e) ≤ p(e+ ε, e).

Lemma 2. If F−j has an atom at e and p(e, e) is a point of discontinuity then
ej = e is not a best-response by j to Fj.

Proof. The idea is that it would be better to choose a little bit more e�ort than
e so as to break the tie and get a jump in the probability of winning at trivial
additional cost. Speci�cally, suppose that −j has an atom f−j(e) at e. If j
provides e�ort e+ ε instead of e then j gains at least

f−j(e)(p
+(e)− 1/2) + c(e)− c(e+ ε).

In the limit as ε→ 0 this is strictly positive proving the result.

Theorem 1. A Nash equilibrium exists and in every Nash equilibrium the prob-
ability of a tie at a point of discontinuity is zero.

We prove existence in Corollary 3 below. Notice that if p(e, e) is a point of
discontinuity then by Lemma 2 both contestants cannot have an atom at e so
the probability of (e, e) is zero, which implies:
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Corollary 1. If p+(e) > 0 for all 0 ≤ e ≤ W and if both contestants have the
same costs there is no symmetric pure strategy equilibrium.

In other words: the basic property that the all-pay auction has no sym-
metric pure strategy equilibrium holds for any contest success function that is
discontinuous along the diagonal.

3. Cost and Success

We are interested in the case in which 1 has a cost advantage. Our goal is to
analyze the extent to which this translates to greater success in the contest. One
measure of success is a greater probability of winning: we say that j has outcome
success if p(Fj , F−j) > 1/2 or equivalently p(Fj , F−j) > p(F−j , Fj). This,
however, fails to take into account the cost of the resources used in achieving
success, so we say that j has greater success if p(Fj , F−j)−cj(Fj) > p(F−j , Fj)−
cj(F−j), that is, j gets a greater fraction of achievable utility than −j.

The simplest notion of cost advantage is that of a pure cost advantage: here
e > 0 results in c1(e) < c−1(e). For example in the case of the all-pay auction
where ej > e−j results in p(ej , e−j) = 1 we have that

Theorem 2. In the all-pay auction if 1 has a pure cost advantage then 1 has
greater success.

Proof. De�ne e−1 ≡ max suppF−1. Consider the strategy for 1 of providing
e�ort eε ≡ e−1 + ε. In the all-pay auction this guarantees a win, so

p(F1, F−1)− c1(F1) ≥ 1− c1(eε).

By the continuity of c1 this implies

p(F1, F−1)− c1(F1) ≥ 1− c1(e−1).

Because 1 has a pure cost advantage, the right hand side of the inequality is
strictly larger than 1−c−1(e−1). Because e(F−1) ∈ suppF−1 there is a sequence
en → e−1 with

p(en, F1)− c−1(en) = p(F−1, F1)− c−1(F−1).

By the continuity of c−1 this implies

1− c−1(e−1) ≥ p(F−1, F1)− c−1(F−1).

Hence it is indeed the case that 1 is more successful.

Our goal is to understand how this result extends to the general case. First
of all, however, we want to rule out uninteresting cases where the result of
Theorem 2 trivially does not extend.
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4. Peaceful Equilibria

Consider the following example.

Example 1. Suppose that c1(e1) = e1, c−1(e−1) = 2e−1 so that 1 has a pure
cost advantage but that p(ej , e−j) ≡ 1/2 so that e�ort does not matter. The
the unique equilibrium is for each to provide zero e�ort so both get 1/2 and
neither is more successful.

We de�ne peaceful equilibria those in which both contestants choose to pro-
vide zero e�ort and have a probability of winning and utility equal to 1/2.4

To have a contested equilibrium in which this is not the case we must rule out
situations such as Example 1 in which the cost function rises too fast relative
to the steepness of the contest success function. We begin with the relevant
de�nitions.

We say that contestant j has very high cost if for all ej > 0 we have cj(ej) >
supe−j

p(ej , e−j)−p(0, e−j). Contestant j has high cost if for all ej > 0 we have
cj(ej) > p(ej , 0)− p(0, 0). Since supe−j

p(ej , e−j)− p(0, e−j) ≥ p(ej , 0)− p(0, 0)
very high cost implies high cost. Notice that when p is discontinuous at (0, 0)
as it is in the all-pay auction or the Tullock case, high cost is ruled out because
cj(ej) is continuous and cj(0) = 0. By contrast, we say that contestant j has
low cost if for some ej we have cj(ej) < p(ej , 0)−p(0, 0), and in particular high
cost and low cost are mutually exclusive.

Theorem 3. If 1 has high cost and −1 has very high cost then the unique
equilibrium is peaceful and neither provides e�ort. If both have high cost there
is a peaceful equilibrium in which neither provides e�ort. If 1 has low cost all
equilibria are contested.

Proof. The condition for very high cost for −1 may be written as p(e−1, e1) −
c−1(e−1) < p(0, e−1) − c−1(0) for all e−1 > 0 so that it is strictly dominant to
provide zero e�ort. The condition for 1 to have high cost may be written as
p(0, 0)− c1(0) > p(e1, 0)− c1(e1) for all e1 > 0 so it is strictly optimal for 1 to
provide zero e�ort as well. Similarly if both have high cost then each �nds it
optimal to provide zero e�ort when the other is doing so. Finally, at a peaceful
equilibrium since c−1(e−1) is assumed to be strictly increasing at the origin,
as we noted above, it must be that −1 provides zero e�ort. The condition
for 1 having low cost may be written as p(e1, 0) − c1(ej1) > p(0, 0) − c1(0)
implying that 1 gets strictly more than 1/2 in equilibrium. This requires that
the chance of 1 winning is greater than 1/2 contradicting the de�nition of a
peaceful equilibrium.

4Notice that we have assumed that cost for −1 is strictly increasing at the origin, so in a
peaceful equilibrium −1 must provide zero e�ort.



6

5. Contested Equilibria

We now focus on contested equilibria and we �rst show that the notion of
pure cost advantage must be strengthened if it is to apply to cases with contested
equilibria.

Example 2. Here we construct a contested pure strategy equilibrium in which
1 has a pure cost advantage but −1 has greater success. Take p(ej , e−j) =
(1/2) + (1/2)(ej − e−j) truncated by 0 below and 1 above. The cost function
for 1 is c1(e1) = (4/7)(e1−1) for e1 ≥ 1 and 0 otherwise. For −1 it is c−1(e1) =
(3/7)e−1 for 0 ≤ e−1 ≤ 2 and 6/7 + (4/7)(e−1− 2) otherwise. At e = 0 we have
c1 = c−1 = 0. At e = 1 we have c1 = 0, and c−1 = 3/7. At e = 2 we have
c1 = 4/7, and c−1 = 6/7. Above 2 the cost di�erence remain equal to 2/7 in
favor of −1. So 1 has a pure cost advantage. We claim that (e1, e−1) = (1, 2) is a
pure strategy equilibrium. Here 1 loses for certain and has no cost so gets 0 while
−1 wins for sure and has a cost of 6/7 so gets 1/7. Hence certainly −1 is more
successful. To see this is an equilibrium observe that 1 is indi�erent to reducing
e�ort below 1: there is no cost and no chance of winning there. Increasing e�ort
above 1 increases the chances of winning at the rate of 1/2 while it increases
costs at the rate of 4/7 so in fact e1 = 1 is optimal for contestant 1. For −1
reducing e�ort below 2 reduces the chances of winning at the rate of 1/2 but
decreases costs only at the rate of 3/7. Increasing e�ort above 1 has no e�ect
on the chances of winning but simply increases costs. Hence e−1 = 2 is optimal
for contestant −1.

We introduce two strengthened notions of cost advantage

1. 1 has a marginal cost advantage if for e2 > e1we have c1(e2) − c1(e1) <
c−1(e2)− c−1(e1)

2. 1 has a homogeneous cost advantage if c1(e) = αc−1(e) for some 0 < α < 1

Given these notions, we have that homogeneous cost advantage implies marginal
cost advantage, and marginal cost advantage implies pure cost advantage. An
important special case of homogeneous cost advantage occurs when both con-
testants have the same absolute cost: for all e we have V1c1(e) = V−1c−1(e). In
this case 1 has a homogeneous cost advantage if and only if the prize is valued
more highly: V1 > V−1.

We also generalize the notion of pure strategy equilibrium. We say that
F1, F−1 is a preemptive equilibrium if either one distribution �rst order stochas-
tically dominates the other or the two are equal. Equipped with these new
de�nitions we can state our �rst main result:

Theorem 4. In a contested equilibrium 1 has greater success if either of the
following two conditions is satis�ed:

(i) 1 has a marginal cost advantage and the equilibrium is preemptive,
(ii) 1 has a homogeneous cost advantage.5

5The proofs of Theorem 4 and of the following Theorem 5 follow from Lemma 3, which we
will state and prove at the end of this section.
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Notice that in Example 2 while 1 had a pure cost advantage in the range
[1, 2], 1 also had higher marginal cost than −1. This possibility is ruled out
by marginal cost advantage. With this assumption 1 has greater success in
all preemptive equilibria. For pure strategies this trivially �works� since all
pure strategy equilibria are preemptive. Unfortunately pure strategy equilibria
do not always exist and we do not have general results about when equilibria
are preemptive. If we further strengthen the cost advantage assumption to
homogeneous cost advantage then we get a general result for all equilibria pure
or mixed.

The following special case of Theorem 4 is useful in a variety of applications.

Corollary 2. In a contested equilibrium 1 has greater success if either of the
following two conditions is satis�ed:

(i) Cost is linear and 1 has a pure cost advantage.6

(ii) 1 has a marginal cost advantage and one contestant provides no e�ort.

The Role of Contest Success

Pure cost advantage is de�ned independent of the contest success function.
An alternative approach is to relate the size of the cost advantage to the steep-
ness of the contest success function. When the contest success function is very
steep, as in the all pay auction, intuitively we expect that very little cost ad-
vantage is needed.

A simple but quite strong form of cost advantage is the following: we say
that 1 has a strong cost advantage over −1 if for some e1 > w−1, where wj is the
willingness to bid de�ned earlier, we have c1(e1) < p(e1, w−1) − p(w−1, w−1).
For example, if 1 has low cost and −1 has high cost then 1 has a strong cost
advantage. To understand this condition better �x w−1, −1's willingness to bid.
If contest success has a strict increase above this point, a su�ciently low cost
for 1 will always have a strong cost advantage. On the other hand, strong cost
advantage in the all-pay auction requires that c1(w−1) < 1/2, while we know
that greater success requires only that c1(w−1) < 1.

For this reason we introduce a weaker condition applied over a broader range
of e�ort levels. We say that 1 has a uniform cost advantage over −1 if for any 0 ≤
e−1 ≤ w−1 there is an e1 > e−1with c1(e1) < c−1(e−1)−(p(e−1, 0)− p(e1, e−1)).
Notice that this condition is satis�ed in the all-pay auction provided that 1 has
a cost advantage. It is also satis�ed in a di�erence model in which p(e1, e−1) =
p(e1−e−1, 0) if c1(2e1) < c−1(e1). One particularly important case of a uniform
cost advantage arises when there is a common underlying strictly increasing cost
function c2(e) but contestant 1 has an e�ort advantage of e1 > 0, meaning that
the probability that 1 wins with underlying e�ort ẽ1 is given by p(ẽ1 + e1, e−1).
This can be made equivalent to the original model by de�ning c1(e1) = c̃2(e1 −
e1) for e1 ≥ e1 and 0 otherwise. Notice that in this case the cost advantage
cannot be homogeneous. Equipped with these new de�nitions we have two

6This assumption is very popular in the literature.
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additional su�cient conditions for greater success in a contested equilibrium to
those of Theorem 4:

Theorem 5. In a contested equilibrium 1 has greater success if either of the
following two conditions is satis�ed:

(iii) 1 has a strong cost advantage,
(iv) 1 has a uniform cost advantage.

Application to Group Size

We now consider that the contestants are groups denoted by j = L, S for
large and small and we want to determine which is the advantaged group. We
specialize to the case where the value of the prize is the same for both groups
VL = VS = V . This corresponds to a situation where, for example, there are a
�xed number of political jobs or money that accrues to the winner who divides
them among the group and may be thought of as prototype of a political contest
involving transfer payments. We denote by ηj > 0 the size of group j where
ηS + ηL = 1 and we assume that both groups have the same per capita cost
as a function of per capita e�ort, and examine the implications for success by
applying Theorem 4.

Speci�cally, if per capita e�ort is ej/ηj , the common per capita cost is de-
noted by C(ej/ηj) and it is assumed di�erentiable, at least for large enough
e�ort levels. Cost for group j is then given by cj(ej) = ηjC(ej/ηj).We say that
per capita cost is asymptotically convex if limx→∞ C ′(x) = ∞ and asymptoti-
cally concave if limx→∞ C ′(x) = 0. Recalling our de�nition that a group has
greater success if it gets a greater fraction of achievable utility than the other
group, we have that:

Theorem 6. If per capita cost is asymptotically convex and for some ê > 0
and λ > 1 we have λC(ê) ≤ p(ê, 0)− 1/2, then a large enough group has greater
success; if per capita cost is asymptotically concave and p is strictly increasing
then a small enough group has greater success.

Proof. If per capita cost is asymptotically convex we can calculate wS from
ηSC(wS/ηS) = 1. As ηL → 1 and so ηS → 0 we see that we must have
C(wS/ηS) → ∞. We can then compute ηSC(wS/ηS) using L'Hospital's rule:
ηSC(wS/ηS)→ wSC

′(wS/ηS). Since C(wS/ηS)→∞ so does wS/ηS so we must
have wS → 0. For ηL su�ciently large we have have cL(ê) = ηLC(ê/ηL) ≤ C(ê).
Hence cL(ê) < λcL(ê) ≤ p(ê, 0)− 1/2. For wS < ê we have p(ê, wS) continuous
so for su�ciently small wS we have cL(ê) < p(ê, wL)−1/2. Hence L has a strong
cost advantage so greater success.

If per capita cost is asymptotically concave let C(ŵ) = 1. As ηL → 1 we
see that wL → ŵ. Since p is strictly increasing, we can �nd a ê > ŵ so that
p(ê, ŵ) − 1/2 > 0. For wL su�ciently close to ŵ we have p continuous, so also
p(ê, wL)− 1/2 > ε > 0. Consider cS(ê) = ηSC(ê/ηS). If C is bounded this goes
to zero. If it is unbounded above from L'Hospital's rule it goes to êC ′(ê/ηS)
which goes to zero by asymptotic concavity. Hence for su�ciently small ηS we
have cS(ê) < ε so that S has a strong cost advantage so greater success.
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We now analyze more closely the example C(x) = ξxα. Here we have

cj(e) = ξηj(e/ηj)
α = ξη1−α

j eα = (ηj/η−j)
1−αc−j(e).

Hence if α > 1 so that C(x) is convex (and asymptotically convex) then L
has a uniform cost advantage, while if α < 1 so that C(x) is concave (and
asymptotically concave) then S has a uniform cost advantage.

Take �rst the convex case of α > 1. Since cj(e) has zero slope at the origin
the low cost assumption is satis�ed by both so L has low cost hence greater
success.

In the concave case we must check that the small group S has low cost, other-
wise there will be a zero e�ort equilibrium in which neither group has greater suc-
cess. We need ξη1−α

S eα < p(e, 0)−1/2 for some e, or ξ < ηα−1
S e−α (p(e, 0)− 1/2).

Notice that for ηS su�ciently small this is satis�ed for any increasing p which
is why no extra condition was needed in Theorem 6. Here a su�cient condition
is

ξ < 21−α max
e
e−α (p(e, 0)− 1/2) ,

in which case S has greater success.

Proof of the Main Theorem

Theorems 4 and 5 follow from (i),(ii), (iii), and (iv) below:

Lemma 3. In a contested equilibrium 1 has greater success if any of the fol-
lowing conditions are satis�ed

(0) she has a pure cost advantage and −1 does not have outcome success,
(i) she has a marginal cost advantage and the equilibrium is preemptive,
(ii) she has a homogeneous cost advantage,
(iii) she has a strong cost advantage,
(iv) she has a uniform cost advantage.

Proof. From optimality of Fj and symmetry we have

p(Fj , F−j)− cj(Fj) ≥ p(F−j , F−j)− cj(F−j) = 1/2− cj(F−j). (1)

By subtraction we also have

p(Fj , F−j)− 1/2 ≥ cj(Fj)− cj(F−j). (2)

First, we show (0). Suppose that 1 has a pure cost advantage but does not
have greater success. Then from equation 1

p(F−1, F1)− c−1(F−1) ≥ p(F1, F−1)− c1(F1) ≥ 1/2− c1(F−1). (3)

If −1 is not providing e�ort this implies p(F−1, F1) ≥ 1/2 and p non-decreasing
implies p(F−1, F1) ≤ 1/2 so p(F−1, F1) = 1/2. Since this is not a peaceful
equilibrium it must be that c1(F1) > 0 so p(F1, F−1)− c1(F1) = 1/2− c1(F1) <
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1/2 while choosing e1 = 0 gives a utility of 1/2 contradicting the fact that 1 is
playing optimally. If −1 is providing e�ort by the pure cost advantage equation

1/2− c1(F−1) > 1/2− c−1(F−1)

From equation 3 this gives p(F−1, F1) > 1/2. Consequently −1 has outcome
success. This proves (0).

To show (i), notice that from equation 2 with j = 1 we have

p(F1, F−1)− 1/2 ≥ c1(F1)− c1(F−1).

From symmetry this gives

−p(F−1, F1) + 1/2 ≥ c1(F1)− c1(F−1)

or
p(F−1, F1)− 1/2 ≤ c1(F−1)− cj(F1). (4)

From equation 2 with j = −1 we have

p(F−1, F1)− 1/2 ≥ c−1(F−1)− c−1(F1)

Hence
c1(F−1)− c1(F1) ≥ c−1(F−1)− c−1(F1). (5)

Suppose that 1 has a marginal cost advantage. If F1 �rst order stochastically
dominates F1 or the two are equal then−1 does not have a outcome advantage so
1 has greater success by (0). Suppose instead that F−1 �rst order stochastically
dominates F1. For e2 > e1 the condition for marginal cost advantage can be
written as c−1(e2) − c1(e2) > c−1(e1) − c1(e1). It follows that c−1(F−1) −
c1(F−1) > c−1(F1)− c1(F1). This contradicts equation 5. This shows (i).

Next, we show (ii). Suppose that 1 has a homogeneous cost advantage. From
equation 5

c1(F−1)− c1(F1) ≥ c−1(F−1)− c−1(F1) = (1/α) (c1(F−1)− c1(F1)) .

Since α < 1 it follows that c1(F−1)− c1(F1) ≤ 0. From equation 4

p(F−1, F1)− 1/2 ≤ c1(F−1)− c1(F1) ≤ 0

so −1 does not have an outcome success. If 1 does not have an outcome success
either, then, it must be that p(F−1, F1) = 1/2 so that also p(F1, F−1) = 1/2.
By (0) we may assume that −1 does not provide zero e�ort with probability
one so by cost advantage

p(F1, F−1)− c1(F−1) > p(F1, F−1)− c−1(F−1) = p(F−1, F1)− c−1(F−1)

and indeed 1 instead has greater success. If 1 does have outcome success by (0)
1 has greater success. This proves (ii).
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We now show (iii). If 1 has a strong cost advantage then there is a ê1

with c1(ê1) < p(ê1, w−j)− p(w−j , w−j) = p(ê1, w−j)− 1/2. Hence p(ê1, w−j)−
c1(ê1) > 1/2. Observe that F−1 ≤ w−1 so p(ê1, w−j) ≤ p(ê1, F−1). Finally,
from optimality

p(F1, F−1)− c(F1) ≥ p(ê1, F−1)− c(ê1) ≥ p(ê1, w−j)− c1(ê1) > 1/2

which as both contestants cannot have a utility greater than 1/2 implies greater
success. This proves (iii)

Finally we prove (iv). Let ê−1 be the top of the support of the equilibrium
F−1. Let e

n
−1 ≤ ê−1 with en−1 → ê−1 and p(en−1, F1)− c−1(en−1) = p(F−1, F1)−

c−1(F−1). Since at points of discontinuity of p the jump is up this implies

p(F−1, F1)− c−1(F−1) ≤ p(ê−1, 0)− c−1(ê−1).

From the de�nition of a uniform cost advantage there is a ê1 such that

p(F−1, F1)− c−1(F−1) < p(ê1, ê−1)− c1(ê1).

Moreover because ê1 is the top of the support of F−1 we get

p(F−1, F1)− c−1(F−1) < p(ê1, F−1)− c1(ê1)

By optimality of F1 this gives

p(F−1, F1)− c−1(F−1) < p(F1, F−1)− c1(F1)

that is to say, greater success.

6. Existence and Robustness

In order to prove existence we will now deal with sequences of contests
pn(e1, e−1), c1n(e1), c−1n(e−1). To make sense of this, we now give a slightly
more formal de�nition of a contest. A contest on W is a contest success func-
tion p(ej , e−j) ≥ 0 for 0 ≤ e1, e−1 ≤ W , which is non-decreasing in the �rst
argument, continuous except possibly at ej = e−j , and satisfying the symme-
try condition p(ej , e−j) + p(e−j , ej) = 1 together with a pair of cost functions
cj(ej) ≥ 0 non-decreasing and continuous with cj(0) = 0, cj(W ) > 1, and c−1

strictly increasing at 0. For a contest on W we take the strategy space to be of
cumulative distribution functions on [0,W ]. Theorem 15 in the Appendix shows
that

Theorem 7. Suppose pn(e1, e−1) → p0(e1, e−1), cjn(ej) → cj0(ej) are a se-
quence of contests in W and that F1n, F−1n are equilibria for n converging
weakly to F10, F−10. Then pn(Fjn, F−jn)→ p0(Fj0, F−j0), cjn(Fjn)→ cj0(Fj0)
for both j and F10, F−10 is an equilibrium for p0(e1, e−1), cj0(ej).

We should emphasize that this result requires only the pointwise conver-
gence of pn, cjn. Pointwise convergence is easy to check, but, as shown in the
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Appendix, has strong consequences for non-decreasing functions on rectangles.
If the limit is continuous the convergence is uniform. Even if the limit is discon-
tinuous on the diagonal - as we allow for contest success function - convergence
is uniform on the set of e�ort pairs that is bounded away from the diagonal.

We say that a contest is well-behaved if p(ej , e−j) > 0, p is strictly increasing
in the �rst argument, cj is strictly increasing, and both have an extension to an
open neighborhood of [0,W ] × [0,W ] that is real analytic. In Appendix 12 we
show

Theorem 8. If p, cj is a contest on W then there is a sequence of well-behaved
contests pn, cjn on W with pn(ej , e−j) → p(ej , e−j), cjn(ej) → cj(ej) for every
(e1, e−1) ∈ [0,W ]× [0,W ].

Since real analytic functions are continuous, as an immediate corollary we
have:

Corollary 3. Nash equilibria exist. If both contestants have the same costs
there is a symmetric Nash equilibrium.

We are interested in understanding properties of contests that are robust.
By a property we mean a statement Π(p, c, F ) such as: there is complete rent
dissipation, contestant 1 has greater success, or one contestant has zero utility.
We say that a property is true in a contest if it is true for all equilibria of the
game. We say that a Π(p, c, F ) in p, c is robust if whenever it is true in p, c then
for every sequence pn, cn converging pointwise to p, c and for n su�ciently large
the property is true in pn, cn.

Corollary 4. Any strict inequality concerning equilibrium utility, probability of
winning, or cost is robust.

Proof. Suppose not. Then there exists a subsequence in which Π(pn, cn, Fn)
is false. Since the space of strategies is compact every subsequence contains a
further subsequence that converges weakly to some F . By Theorem 7 F is an
equilibrium and utility, winning probability, and cost converge. Hence as the
strict inequality is presumed to be satis�ed for F for all su�ciently large n it
was satis�ed for Π(pn, cn, Fn), a contradiction.

Finite Support

In Appendix 14 we show that well-behaved contests have a relatively simple
equilibrium structure:

Theorem 9. Suppose that c1(bj) = 0 for 0 ≤ b1 ≤ w1 and if w1 > 0 we
require that p(bj , b−j) is strictly increasing (so in particular in any equilibrium
limw↑w1

F1(w) = 0). Suppose as well that cj(W ) > 1. If p(bj , b−j), cj(bj) have
real analytic extensions to an open neighborhood of [w1,W ]× [0,W ] then every
equilibrium has �nite support.
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Ewerhart (2015) who developed the technique we use in the appendix ana-
lyzed the symmetric Tullock contest for high degrees of sensitivity. That func-
tion is not well-behaved since it is discontinuous at zero and without the exten-
sion of analyticity below zero the �niteness result fails: in the Tullock case the
support is countable with a single accumulation point at zero.

7. Rent Dissipation and Zero Surplus

Historically the literature on contests has focused especially on the idea of
complete rent dissipation, meaning that both contestant get zero, competing so
hard that the gains are cancelled by the costs. This is the case in the symmetric
all pay auction. Notice that this is ruled out if one contestant provides zero
e�ort7 and by a contested equilibrium in which one contestant has a greater
success.

Also important in the literature has been the weaker situation in which one
contestant gets nothing - this is the case in every all pay auction, symmetric or
not. It turns out that the possibility of a contestant getting nothing is quite
exceptional. We say that a property is generic if it is robust and if for any
p, c1, c−1 for which it is not true there is a sequence pn, cjn converging pointwise
to p, cj in which it is true.

We formally de�ne properties corresponding to dissipation:

1. no dissipation: in equilibrium c1(F1) + c−1(F−1) = 0

2. partial dissipation: in equilibrium 0 < c1(F1) + c−1(F−1) < 1

3. some dissipation: in equilibrium 0 < c1(F1) + c−1(F−1)

4. complete dissipation: in equilibrium c1(F1) + c−1(F−1) = 1

5. γ-dissipation: in equilibrium c1(F1) + c−1(F−1) > γ where 0 ≤ γ < 1

Notice that complete dissipation means γ-dissipation for every 0 ≤ γ < 1.
Moreover, contested equilibrium implies some dissipation. If in addition one
contestant has greater success then there is partial dissipation. We have

Theorem 10. Concerning rent dissipation:
(i) there is a subset of contests with no dissipation that are robust
(ii) the entire set of contests with some (or partial) dissipation is robust
(iii) contests without complete dissipation are generic
(iv) contests with γ-dissipation are robust

Proof. (i) The property of very high cost for j is cj(ej) > supe−j
p(ej , e−j) −

p(0, e−j) which is robust by Corollary 4. Suppose that p(ej , e−j) is continuous.
In this case the property of high cost cj(ej) > p(ej , 0)− p(0, 0) for all ej > 0 is
equivalent to maxej cj(ej)− p(ej , 0)− p(0, 0) > 0, also robust by Corollary 4. It
follows that for continuous p(ej , e−j) the property of 1 having high cost and −1
having very high cost is robust. By Theorem 3 the latter two conditions imply
a unique peaceful equilibrium and hence no dissipation.

7The other one cannot get less than 1/2 as this is obtainable by providing zero e�ort.
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Part (ii) follows directly from Corollary 4 and the fact that some (partial)
dissipation is de�ned by a strict cost inequality

For (iii) we show the slightly stronger result that both contestants getting
positive utility is generic. Strict inequality concerning utility is robust by Corol-
lary 4: this proves that both contestants getting positive utility is robust. We
will show that for any p0, cj0 there is a sequence pn, cjn converging uniformly to
p0, cj0 in which each contestant gets positive utility in every equilibrium, and
this will complete the proof.

For costs we take cjn = cj0. Then take 1 > λn > 0 to be a sequence
converging to zero and de�ne

pn(ej , e−j) = (1− λn)p0(ej , e−j) + λnΦ(ej − e−j)

where Φ is the standard normal cumulative distribution function. This obvi-
ously converges uniformly to p0(ej , e−j). Moreover, for 0 ≤ ej ≤ W we have
pn(ej , e−j) ≥ λnΦ(−W ). Hence bidding zero gets at least λnΦ(−W ) > 0 so
this is obtained by both contestants in any equilibrium.

The proof of (iv) follows from taking an anomalous subsequence and then
�nding one on which Fn converges.

Notice that (iii) states that complete dissipation is not robust and (iv) that
contests near those with complete dissipation - so for example close to symmetric
all pay - have nearly complete dissipation.

8. Resource Limits

Some of the existing contest models truncate the e�ort level above: for
example, there might be only a limited number of voters or a budget constraint
like in Che and Gale (1996). This is ruled out in our model, but as in Levine
and Mattozzi (2019) we can approximate the e�ect by assuming that cost grows
rapidly, and in particular becomes greater than the value of the prize, as the
limiting e�ort level is approached. For these approximations our assumptions
are satis�ed so our results hold.

More generally, a model with a truncated e�ort level is equivalent to a model
in which cost is discontinuous at the truncation point, jumping to a level greater
than the value of the prize. Speci�cally, we now wish to consider the possibility
that cj instead of being continuous on the whole support, it is continuous on
[0, ej ] where ej > 0, cj(ej) = cj < 1, and for ej > ej we have cj(ej) = cMax > 1.

Here it is crucial to emphasize that we did not use the continuity of the cost
function in proving our results on advantage, so those results extend to this
more general class of models. Furthermore, if the contest success function itself is
continuous, we show in Theorem 17 that our robustness results continue to hold.
This leaves the issue of robustness when both p and c are discontinuous, and here
we can go no further. The following example adapted from Levine and Mattozzi
(2019) shows that upper hemi-continuity of the equilibrium correspondence can
fail in that case.
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Example 3. Let the contest success function be that of the all-pay auction,
and �x a cost function for both contestants that is linear with constant unit
marginal cost up to a resource limit of ej > 0. We normalize the value of the
prize to be 1, assume that ej + e−j = 1/2 and let cMax = 2. This means that
both contestants want to bid more than their resource limits.

Suppose �rst that e1 > e−1. In this case contestant 1 receives a utility of
at least 3/4 and contestant −1 gets a utility of 0. Moreover, it is well-known
that in the unique equilibrium bidding is uniform in (0, e−1) and that −1 has
an atom at zero and 1 has an atom at e−1. The implication of the non-trivial
atom at e−1 means, however, that the tie-breaking rule that each contestant has
an equal chance of winning in case of a tie is not consistent with equilibrium.
If that is the tie-breaking rule, then −1 should bid e−1, guaranteeing at least
a 50% chance of winning, and so earning at least 1/2 − 1/4 > 0 rather than
zero as the equilibrium requires. In fact the tie-breaking rule at e−1 must favor
contestant 1 at least to the extent that contestant −1 cannot pro�t from that
bid. In other words: when both p and c are discontinuous we must allow for
endogenous tie-breaking rules.

Second, consider what happens as we pass through the point of symmetry.
For e1 > e−1 contestant 1 earns at least 3/4 and contestant −1 earns nothing;
at e1 = e−1 both contestants earn 1/4, while for e1 < e−1 contestant 1 earns 0
and contestant −1 earns at least 3/4. In other words: both the individual and
aggregate payo� are discontinuous as we pass through the point of symmetry.

Finally, suppose that we approximate the discontinuous cost functions by
functions that are linear up to ej−ε then rise steeply to cMax as ej is approached.
Levine and Mattozzi (2019) show that in this case as long as e1 6= e−1 payo�s are
well-behaved in the limit. However, this is not the case when there is symmetry.
If e1 = e−1 then with continuous cost there is complete rent dissipation: both
players get zero. However, in the limit both contestants get 1/2 − 1/4 so we
have equilibria with complete rent dissipation converging to one where both
contestants get a positive rent.

9. Examples in the Literature

A great many di�erent combinations of con�ict success functions and costs
have been discussed in the literature. Before reviewing some of these examples,
we start with a simple observation. Given the separability of the payo� function,
the units of e�ort do not matter. While it might be natural from an economic
point of view to identify e�ort with number of voters, hours devoted to the
cause, or amount of money contributed, the model does not care about the
units. Speci�cally, if we let h(e) denote a continuous strictly increasing function
with h(0) = 0, that is, a strictly increasing cost function, then the contest
p(h(ej), h(e−j)), cj(h(ej)) is equivalent to the contest p(ej , e−j), cj(ej) in the
sense that any equilibrium in one contest can be transformed to an equilibrium
of the other contest with exactly the same probabilities of winning and costs. If
an equilibrium strategy of the h contest is denoted by Fhj(ej) we can map the
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equilibrium strategies by Fhj(h(ej)) = Fj(ej) and Fhj(ej) = Fj(h
−1(ej)). In

particular, if for contestant −1 the cost c−1(e−1) is strictly increasing, we can
take h(e−j) = c−1

−1(e−j) in which case the cost function of −1 is linear and given
by ch−1(ej) = ej . Notice the implication that the statement �cost is convex�
has no real meaning in a contest: we can change the units of cost so as to make
cost concave or convex and get an equivalent contest by suitably modifying the
contest success function.

In a similar vein, not all models in the literature assume that the contest
success function is symmetric. Many that do not, however, assume that one
contestant has a bidding advantage. Let h(e1) be a strictly increasing continuous
function with h(e1) ≥ e1. This represents the idea that e�ort by 1 is �worth
more� than e�ort by −1: for example, in a political contest because 1 has a
more appealing platform or more attractive candidate. Here the probability of
winning for 1 is given by p(h1(e1), e−1). However, there is a symmetric contest
that is equivalent. Here we create a new contest with contest success given by
p(e1, e−1) and rede�ne cost for 1 as c1(h−1(e1)) for e1 ≥ h(0) and 0 otherwise.
Since it may be that there is a bidding advantage even at zero we need to allow
the possibility that c1 is �at up to h(0).

Finally, in some settings the objective function is given as p(ej , e−j)−c(ej)−
b(e−j) where b(e−j) represents costs of −j that are incurred by j or alternatively
any collateral damage in�icted on j by the e�ort of −j . The point here is
that subtracting a function that depends only on the other contestant's choice
changes the payo�s of the game but has no e�ect on equilibrium strategies. In
particular, if we agree that it is still sensible to measure achievement of goals
by p(ej , e−j) − c(ej), that is net of collateral damage about which j can do
nothing, then b(e−j) does not matter. It does matter, however, for assessment
of the e�ciency of di�erent contest success functions: low collateral damage is
obviously socially desirable. For example, in choosing between an election and a
military con�ict both designed to exactly mimic the contest success, the former
is preferred because it avoids collateral damage.

In the literature contest success functions are derived from a variety of con-
siderations. Some authors derive con�ict resolution functions from axioms: see,
for example, Jia, Skaperdas and Vaidya (2013). In the voting literature contest
success functions are often derived from models of voter turnout where there
are random shocks to voter preferences, see, for example, Levine and Mattozzi
(2019) and references therein.

The analysis of equilibrium is also quite varied. Some authors restrict atten-
tion to pure strategy equilibria, see, for example, the survey of Corchón (2007).
Some authors compute pure strategy equilibrium using �rst order conditions
without checking second order conditions: their results only hold in part of the
parameter space. Others impose speci�c parameter assumptions to assure the
existence of pure strategy equilibrium, while yet others analyze mixed strategy
equilibria. While contest success functions and the type of equilibrium ana-
lyzed are quite varied, assumptions about cost are less so: while not all authors
assume linear cost it is certainly the most popular assumption.

The simplest and most studied example of a contest is the all-pay auction



17

in which the highest e�ort wins: if ej > e−j then p(ej , e−j) = 1. Hillman and
Riley (2006) gave a complete solution for linear cost while the case of non-linear
cost as been covered by Siegel (2014) and Levine and Mattozzi (2019) among
others. In the all-pay auction in which the highest e�ort wins the structure
of equilibrium strategies and payo�s is well understood. There is a unique
mixed strategy equilibrium. Payo�s are equivalent to those in a second price
auction: the contestant with the least willingness to bid gets nothing and the
contestant with the greatest willingness to bid gets the di�erence between the
value of the prize and the cost of matching the willingness to bid of the opponent.
In the linear cost case the equilibrium is easily described: the contestant 1
with the greatest willingness to bid chooses e�ort uniformly on [0, w−1] and the
contestant with the least willingness to bid randomizes between providing zero
e�ort and playing uniformly on [0, w−1] and the probability of zero e�ort is
easily computed.

A second widely used contest success function is that of Tullock (1967). For
a parameter β ≥ 0 it is given by

p(ej , e−j) =
eβj

eβj + eβ−j
.

This converges (pointwise) to the all-pay auction as β → ∞. For β ≤ 1 and
weakly convex cost there is a unique pure strategy equilibrium, which is easy
to compute in the linear cost case. The non-linear cost case has been studied
as well: see, for example, Herrera, Morelli and Nunnari (2015). With linear
cost for β ≥ 2 there are only mixed strategy equilibria and these have been
characterized in the symmetric case by Ewerhart (2015).

The Tullock contest success function is a special case of a contest success
function that depends only on the ratio of e�orts: p(ej , e−j) = P (ej/e−j).
Notice that such a function is either constant or discontinuous at zero: if the
probability of success is di�erent for two di�erent ratios then taking both levels
of e�ort to zero holding �xed the ratio gives a di�erent answer for the two. This
implies, as we will indicate later, that there is no equilibrium in which both
contestants provide zero e�ort with probability one. One example of a ratio
contest success function di�erent from the Tullock function is Feddersen and
Sandroni (2006) who take p(ej , e−j) = (1/2)(ej/e−j) for ej < e−j . We note in
passing that they assume also a linear e�ort advantage for one contestant and
quadratic cost. They also assume collateral damage in that each contestant is
assumed to care equally about the cost of the other contestant as about their
own. As indicated above this matters only for e�ciency computations, and
other models of ethical voters (also known as rule utilitarian) such as Coate and
Conlin (2004) have dropped that assumption.

An alternative to the Tullock function is the logit function introduced by
Hirshleifer (1989)

p(ej , e−j) =
exp(βej)

exp(βej) + exp(βe−j)
.
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This also converges to the all-pay auction as β → ∞. Hirshleifer (1989) origi-
nally solved the case with linear cost where β is small enough to allow a pure
strategy equilibrium in which case the contestant with higher cost bids zero.
While the Tullock function is a special case of a ratio model, the Hirshleifer
function is a special case of a di�erence model

p(ej , e−j) = P (ej − e−j).

Di�erence models have been widely used, in part because they are well behaved
with respect to a linear bidding advantage h(e1) = h0 + e1. This is the case in
Shachar and Nalebu� (1999) who take

pj(ej , e−j) = H

(
1

2
+

exp(ej)− exp(e−j)

exp(ej) + exp(e−j)

)
where H is a cdf on [0, 1]. In addition to a linear bidding advantage they allow
also for an advantage in the H function. That type of advantage is not a special
case of the symmetric contest success model: their model can only be reduced
to a standard contest if the cdf H is symmetric around 1/2. In a similar way
the model of Coate and Conlin (2004) maps to a standard contest only if the
parties are of equal expected size. By contrast Herrera, Levine and Martinelli
(2008) allow only bidding advantage so their model is equivalent to a standard
contest for all parameter values.

The papers using di�erence models discussed so far restrict attention to pure
strategy equilibria. In the case of a quasi-linear function P (ej − e−j) which is
linear when it is not 0 or 1 a substantial amount is known about mixed strategy
equilibrium. Che and Gale (2000) give a relatively complete analysis when cost
is linear and explicitly compute the equilibria, which all have �nite support.
Ashworth and Bueno De Mesquita (2009) extend that analysis to the case
where one contestant has linear cost and the other has a linear e�ort advantage.
The fact that equilibria have �nite support is not that surprising in light of our
subsequent results in Theorem 9. The quasi-linear function is not di�erentiable.
If we take the opposite case of a con�ict resolution function (and cost functions)
that are real analytic, we show that the support for both players is always �nite.
In particular, this is the case for di�erence models such as the logit of Hirshleifer
(1989), or for example, if we take P to be a normal cdf.

Most of the models in the literature are either of the ratio or di�erence
form. Despite some controversy over which is more appropriate the two are not
so di�erent. For starters, in both Hirshleifer (1989) and Tullock (1967) if β is
large both are similar to an all-pay auction. Since the equilibrium of the all-pay
auction is unique our Theorem 7 shows that the equilibrium strategies for both
models must be similar in the sense that the di�erence between any two must
converge weakly to zero. The models are more similar than that, however. If in
a ratio model we allow a small e�ort for free, so that cj(ej) = 0 for 0 ≤ ej ≤ b
for some b > 0 then since the strategy of providing less than b units of e�ort is
weakly dominated (strictly if p is strictly increasing) we may as well assume that
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the contestants make e�ort only ej ≥ b and we can then change the units so that
b in the original units corresponds to 0 in the new units, that is, h(ej) = ej + b
(se for example Amegashi (2006)), in which case we have for the ratio model

P

(
ej + b

e−j + b

)
.

Having eliminated by a small perturbation the discontinuity at 0 we can now
change units again with h(ej) = b (exp(ej)− 1) to convert the ratio model into

P

(
exp(ej)

exp(e−j)

)
,

an equivalent di�erence model.
We conclude with an observation about Hirshleifer (1989)'s argument that

one contestant should be expected to provide zero e�ort in any equilibrium. He
points out that it is likely to be the case in practice that e�ort should make
the greatest di�erence when the contest is close. Call a contest success function
convex-concave if p(ej , e−j) as a function of ej is strictly convex for ej < e−j and
strictly concave for ej > e−j . This captures the idea that the closer the contest
the more e�ort matters. It fails in the Tullock model since, as Hirshleifer points
out, p(ej , e−j) as a function of ej has an in�ection point at ej < e−j . We can
generalize Hirshleifer's result with linear costs to more general convex-concave
function and mixed strategy equilibria by adapting his argument.

Theorem 11. Suppose the contest success function is real analytic and convex-
concave and that costs are linear. Then one contestant provides zero e�ort with
strictly positive probability.

Proof. Theorem 9 shows that the support of the equilibrium strategies are �nite.
Suppose that the lowest point ej of support in the equilibrium Fj is no greater
than that in F−j . Then p(ej , F−j) must be twice continuously di�erentiable and
convex over 0 ≤ ej ≤ ej . This implies the same is true for the payo� function
p(ej , F−j) − Cjej . Unless ej = 0 this is inconsistent with ej being optimal for
j.

This result is somewhat less interesting in the mixed strategy case since the
contestant that provides zero e�ort may also with positive probability provide
the highest e�ort.

10. Conclusion

The goal of this paper has been to establish general results about contests.
We characterize cost functions for which there are peaceful and contested equi-
libria. We then prove three main results. First, there cannot be a pre-emptive
equilibrium in which the higher cost contestant has greater success. Second, a
contestant with a su�ciently great cost advantage always has greater success.
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Third, if the cost advantage is a homogeneous one, then the lower cost contes-
tant always has greater success. Finally, we study the robustness of equilibrium.
We prove a basic upper hemi-continuity result and examine approximation by
real analytic functions. This enables us to show that properties involving strict
inequality are robust and that large classes of examples have equilibria with
�nite support.
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11. Appendix: Upper Hemi-Continuity

Mathematical Preliminaries

Suppose that X is a compact rectangle in <M , that fn(x), f0(x) are uni-
formly bounded non-decreasing real valued functions on X such that fn(x) →
f0(x). Denote by D the set of discontinuities of f0(x) and by D the closure of
D.

Theorem 12. Suppose that Do ⊃ D is an open subset of X. Then fn converges
uniformly to f on X\Do.

Proof. If X\Do is empty this is true trivially. Otherwise as X\Do is compact
if the theorem fails there is a sequence xn ∈ X\Do with xn → x ∈ X\Do and
fn(xn) → z 6= f0(x). There are two cases as z < f0(x) and z > f0(x). Denote
the bottom corner of X as y0 and the top corner as y1. Notice that since Do is
open and contains the closure of D, then x has an open neighborhood in which
f0 is continuous.

If z < f0(x) and x 6= y0 since f0 is continuous near x there is a y < x
with f0(y) > z and an N such that for n > N we have xn > y. Since fn is
non-decreasing fn(xn) ≥ fn(y). Hence z ≥ f0(y) a contradiction. If x = y0

then fn(y0) → f0(y0) while fn(xn) ≥ fn(y0). Taking limits on both sides we
get z ≥ f0(y0) a contradiction

If z > f0(x) and x 6= y1 we have y > x such that f0(y) < z and an N such
that for n > N we have xn < y. This gives fn(xn) ≤ fn(y) implying z ≤ f0(y)
a contradiction. If x = y1 we have fn(x1) → f0(x1) and fn(xn) ≤ fn(x1) and
taking limits on both sides we get z ≤ f0(x1) a contradiction.

We say that an open set Do encompasses f0 if there is a closed set D1 ⊂ Do

such that the interior of D1 contains D. Let Do denote the closure of Do.

Theorem 13. Suppose that the probability measures µn converge weakly to µ0.
If there is a sequence of sets Dm

a , D
m
g with Dm

a ∪Dm
g encompassing f0 such that

lim supm lim supn supx∈Dm
a
|fn(x)−f0(x)| = 0 and lim supm lim supn µn(D

m

g ) =

0 then lim
´
fndµn =

´
f0dµ0.

Proof. By Urysohn's Lemma there are continuous functions 0 ≤ gm(x) ≤ 1
equal to 1 for x ∈ X\Dm

0 and equal to zero for x ∈ Dm
1 . Setting Dm

o = Dm
g ∪Dm

a

|
ˆ
fndµn −

ˆ
f0dµ0| ≤ |

ˆ
gmfndµn −

ˆ
gmf0dµ0|+

+|
ˆ

(1− gm)fndµn −
ˆ

(1− gm)f0dµ0| ≤

≤ |
ˆ
gmfndµn −

ˆ
gmf0dµ0|+ |

ˆ
D

m
0

fndµn −
ˆ
f0dµ0|.

If φn, φ0 are real numbers and mn,m0 are non-negative real numbers we have
the inequality |φnmn − φ0m0| ≤ |φn − φ0|(mn +m0) so
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|
ˆ
fndµn−

ˆ
f0dµ0| ≤ |

ˆ
gmfndµn−

ˆ
gmf0dµ0|+

ˆ
D

m
o

|fn− f0|d(µn +µ0).

First we show that
´
D

m
o
|fn − f0|d(µn + µ0)→ 0. Let f = sup |fk(x)|. we have

ˆ
D

m
o

|fn − f0|d(µn + µ0) ≤
ˆ
D

m
a

|fn − f0|d(µn + µ0) +

ˆ
D

m
g

|fn − f0|d(µn + µ0)

≤ sup
x∈Dm

a

|fn(x)− f0(x)|+ f
(
µn(D

m

g ) + µ0(D
m

g )
)
.

The �rst term converges to 0 by hypothesis. For the second, as D
m

g is closed

and µn converges weakly to µ0 we have µ0(D
m

g ) ≤ lim supµn(D
m

a ) so

lim sup
n
f
(
µn(D

m

g ) + µ0(D
m

g )
)
≤ 2f lim sup

n
µn(D

m

g )

giving the �rst result. Second, write

|
ˆ
gmfndµn−

ˆ
gmf0dµ0| ≤ |

ˆ
gm|fn−f0|dµn+ |

ˆ
gmf0dµ0−

ˆ
gmf0dµn|.

Since gmf0 is continuous by construction we have limn |
´
gmf0dµ0−

´
gmf0dµn| =

0 by weak convergence of µn to µ0.
Finally, we show that limn |

´
gm|fn − f0|dµn = 0. Denote by Dmo

1 the
interior of Dm

1 and Xm
1 = X\Dmo

1 . By Theorem 12 |fn(x) − f0(x)| ≤ εmn for
x ∈ Xm

1 where limn ε
m
n = 0. As gm(x) = 0 for x ∈ Dm

1 ⊃ Dmo
1 we have

gm|fn − f0| ≤ εmn so that
´
gm|fn − f0|dµn ≤ εn.

Recall that D denote the closure of D.

Theorem 14. Suppose that X is a compact rectangle in <M , that fn(x), f0(x)
are uniformly bounded non-decreasing real valued functions on X, that fn(x)→
f0(x) and that the probability measures µn converge weakly to µ0. If µ0(D) = 0
then lim

´
fndµn =

´
f0dµ0.

Proof. Take the sets Dm
o = Dm

g to be the open εm → 0 neighborhoods of D and

take Do
a = ∅. We may take Dm

1 sets to be the closed ε/2 neighborhoods of D:
this clearly contains D in its interior and is contained in Dm

o . Take Dm
2 to be

the open 2εm neighborhoods of D: as these contain D
m

o is su�ces to show that
lim supm lim supn µn(Dm

2 ) = 0. Since Dm
2 is open and µn converges weakly to µ

we have lim supn µn(Dm
2 ) ≤ µ0(Dm

2 ), so we need only prove lim supm µ0(Dm
2 ) =

0. Since ∩mDm
2 = D we have limm µ0(Dm

2 ) = µ0(D) = 0.

Upper Hemi-Continuity of the Equilibrium Correspondence

We now consider a convergence scenario. Here pn(e1, e−1) → p0(e1, e−1),
cjn(ej) → cj0(ej) is a sequence of contests on W . We take F1n, F−1n to be
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equilibria for n converging weakly to F10, F−10 with µjk the corresponding
measures. We say that the convergence scenario is upper hemi-continuous if
pn(Fjn, F−jn)→ p0(Fj0, F−j0), cjn(Fjn)→ cj0(Fj0) for both j and F10, F−10 is
an equilibrium for p0(e1, e−1), cj0(ej).

Lemma 4. If pn(Fjn, F−jN ) → p0(Fj0, F−j0) for both j then the convergence
scenario is upper hemi-continuous.

Proof. By Theorem 14 cjn(Fjn)→ cj0(Fj0) on the relevant domain 0 ≤ ej ≤W .
This shows that ujn(Fjn, F−jn)→ uj0(Fj0, F−j0). Next consider j deviating to
ej ∈ [0,W ]. Suppose �rst that ej is an atom of F−j0. Then this is not a best
response. Suppose second that ej is not an atom of F−j0. Hence the function of
e given by p0(ej , e) has measure zero with respect to F−j0. If follows from Theo-
rem 14 that pn(ej , F−1n)→ p0(ej , F−j0), so also ujn(ej , F−jn)→ uj0(ej , F−j0).
If ejwas a pro�table deviation, that is, uj0(ej , F−j0) > uj0(Fj0, F−j0), it fol-
lows by the standard argument that for su�ciently large n we would have
ujn(ej , F−jn) > ujn(Fjn, F−jn) contradicting the optimality of Fjn.

In what follows all sequences are of strictly positive numbers.

Lemma 5. If γm → 0 then there are sequences Gn, Hm → 0 such that on
[0,W + 2 max γm] we have maxe∈[0,W ] cjn(e+ 2γm)− cjn(e) ≤ Gn +Hm.

Proof. By Lemma 12 we have cjn converging uniformly to cj0 so that

max
e∈[0,W ]

cjn(e+ 2γm)− cjn(e) ≤ max
e∈[0,W ]

cj0(e+ 2γm)− cj0(e) +Gjn

Since cj0 is uniformly continuous on compact intervals maxe∈[0,W ] cj0(e+2γm)−
cj0(e) ≤ Hjm. Then take Gn = maxGjn, H

m = maxHjm.

Lemma 6. Fix sequences γm, θm → 0. Then there exists a sequence un → 0
and γm ≥ ωm such that for 0 ≤ e−j − e ≤ ωm:

(i) If p(e+ γm)− 1/2 < θm then sup0≤ek−e≤ωm |pn(ej , e−j)− p0(ej , e−j)| ≤
2θm + un.

(ii) If p(e+ γm)− 1/2 ≥ θm then pn(e+ γm + ωm, e−j)− 1/2 ≥ θm/2− un.

Proof. Wemay apply Theorem 13 to the functions pn(ej ,−x−j), p0(ej ,−x−j) on
the rectangle [0,W ]× [−W, 0] with Do = {(ej , x−j) ||ej + xj | < γm } to conclude
that pn(ej ,−x−j) converges uniformly to p0(ej ,−x−j) there. Hence there exists
a constant um such that for ej−e−j ≥ γm we have |pn(ej , ej−1)−p0(ej , ej−1)| ≤
un.

Fix e. For (i) Take ωm = γm. Take 0 ≤ ek − e ≤ ωm. Observe that

p0(ej , e−j) ≤ p0(e+ ωm, e) < 1/2 + θm.

Since e + ωm − e ≥ γm we also have |pn(e + ωm, e) − p0(e + ωm, e)| ≤ un this
implies

pn(ej , e−j) ≤ 1/2 + θm + un.
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Reversing the role of j and −j we see that

|p0(ej , e−j)− 1/2| < θm, |pn(ej , e−j)− 1/2| < θm + un.

Hence |pn(ej , e−j)− p0(ej , e−j)| < 2θm + un.
For (ii), observe that p0(ej , e−j) is uniformly continuous on ej − e−j ≥ γm.

Hence we may �nd a ωm > 0 which without loss of generality we may take to be
smaller than γm such that for |e−j − e| ≤ ωm we have |p0(ej , e−j)− p0(ej , e)| <
θm/2. Since pn(e + γm + ωm, e−j) is non-increasing in e−j we put this all
together:

pn(e+γm+ωm, e−j) ≥ pn(e+γm+ωm, e+ωm) ≥ p0(e+γm+ωm, e+ωm)−un

≥ p0(e+ γm +ωm, e)− θm/2−un ≥ p(e+ γm)− θm/2−un ≥ 1/2 + θm/2−un.

Lemma 7. For any γm → 0 there are sequences Gn, Hm → 0 such that for any
θm and ωm ≤ γm and any e with pn(e+ γm + ωm, e−j)− 1/2 ≥ θm/2− un > 0
for all 0 ≤ e−j − e ≤ ωm we have

min
j
µjn([e, e+ ωm]) ≤ Gn +Hm

θm/2− un

Proof. Given γm → 0 choose the sequences Gn, Hm by Lemma 5.
De�ne mj ≡ µjn([e, e + ωm]). If for one j we have mj = 0 then certainly

the inequality holds. Otherwise, consider that if each j plays µjn/mj in [e, e+
ωm] then one of them must have probability no greater than 1/2 of winning.
Say this is j. Consider the strategy for j of switching from µjn to µ̂jn by not
providing e�ort in [e, e+ ωm] and instead providing e�ort with probability mj

at e+ γm + ωm. This results in a utility gain of at least

m−j (θm/2− un)− (cjn(e+ γm + ωm)− cjn(e))

≥ m−j (θm/2− un)−(cjn(e+ 2γm)− cjn(e)) ≥ m−j (θm/2− un)−(Gn +Hm) .

As the utility gain cannot be positive, this implies 0 ≥ m−j (θm/2− un) −
(Gn +Hm) giving the desired inequality.

Theorem 15. Convergence scenarios are upper hemi-continuous.

Proof. By Lemma 4 it su�ces to show pn(Fjn, F−jn)→ p0(Fj0, F−j0).
Observe that pn(ej , e−j), p0(ej , e−j) are non-decreasing in the �rst argument

and non-increasing in the second so that the functions on the rectangle [0,W ]×
[−W, 0], given by fk(x) ≡ pk(xj ,−x−j), are uniformly bounded. De�ne µn =
µ1n × µ−1n and µ0 = µ10 × µ−10. From Fubini's Theorem µn converges weakly
to µ0. so Theorem 13 applies if we can show how to construct the sets Dm

a , D
m
g .

Fix a sequence γm → 0. Choose sequences Gn, Hm by Lemma 7 and choose
θm → 0 so that Hm/θm → 0. Then choose un → 0 and ωm ≤ γm by Lemma 6.
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We cover the diagonal with open squares of width ωm. Speci�cally, for ` =
1, 2, . . . , L we take the lower corners κ` of these squares to be 0, 2ωm/3, 4ωm/3, . . .
until the �nal square overlaps the top corner at (W,W ). There are two types
of squares: a-squares where p(κ` + γm) − 1/2 < γm and g-squares where
p(κ` + γm)− 1/2 ≥ γm.

We take Dm
a to be the union of the a-squares and Dm

g to be the union of the
g-squares. Then for each square ` we may take a closed square with the same
corner but 3/4rths the width and de�ne D1 to be the union of these squares.
Then Dm

o = Dm
a ∪Dm

b ⊃ D1 ⊃ D so that indeed Dm
o encompasses p0.

SinceDm
a is the union of a-squares, by Lemma 6 (i) we have supx∈Dm

a
|fn(x)−

f0(x)| ≤ 2θm + un, so indeed lim supm lim supn supx∈Dm
a
|fn(x)− f0(x)| = 0 as

required by Theorem 13.
For a g-square ` we have 0 ≤ e−j − e ≤ ωm so by Lemma 6 pn(e + γm +

ωm, e−j)− 1/2 ≥ θm/2− un. Then by Lemma 7

min
j
µjn([κ`, κ` + ωm]) ≤ Gn +Hm

θm/2− un
.

We now add up over the g-squares four times, once for the odd numbered ones
and once for the even numbered ones. This assures that each sum is over disjoint
squares. In each case we �rst add those for which j = 1 has the lowest value of
µjn([κ`, κ` + ωm]) and once for j = −1. In each set of indices Λ we get a sum∑

`∈Λ

µjn([κ`, κ` + ωm])µ−jn([κ`, κ` + ωm]) ≤

Gn +Hm

θm/2− un
∑
`∈Λ

µ−jn([κ`, κ` + ωm]) ≤ Gn +Hm

θm/2− un
.

This gives a bound

µn(D
m

g ) ≤ Gn +Hm

θm/2− un
.

We then have

lim sup
n
µn(D

m

g ) ≤ Hm

θm/2

and since we constructed the sequences so that Hm/θm → 0 the result now
follows from Theorem 13.

12. Appendix: Smoothing Con�ict Resolution Functions

Theorem 16. If p, cj is a contest on W then there is a sequence of well-behaved
contests pn, cjn on W with pn(ej , e−j) → p(ej , e−j), cjn(ej) → cj(ej) for every
(e1, e−1) ∈ [0,W ]× [0,W ].

To prove this theorem we �rst state and prove
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Lemma 8. Suppose that pn(ej , e−j)→ p0(ej , e−j) and pmn(ej , e−j)→m pn(ej , e−j).
Then there is M(n) such that pM(n)n(ej , e−j)→ p0(ej , e−j).

Proof. De�ne d(p, q) = inf{γ| sup|ej−e−j |≥γ |p(ej , e−j)− q(ej , e−j)| ≤ γ}. Then
d(p, q) = 0 if and only if p = q, d(p, q) = d(q, p) and d(p, q) + d(q, r) ≤
2 max{d(p, q), d(q, r)}. Moreover, d(pn, p0) → 0 if and only if pn(ej , e−j) →
p0(ej , e−j). Let εn → 0 and take M(n) such that for m ≥ M(n) we have
d(pmn, pn) < εn. Then d(pM(n)n, p0) ≤ 2 max{εn, d(pn, p0)} → 0.

We now prove Theorem 16.

Proof. By Lemma 8 we can do the perturbations sequentially.
Step 1: Perturb p to get it strictly increasing with strictly positive in�mum:

take pn(ej , e−j) = (1 − λn)p(ej , e−j) + λnΦ(ej − e−j) where Φ is the standard
normal cdf.

Step 2: Given p strictly increasing and positive perturb it to get it strictly
increasing, positive and C2. Let gn(xj |ej) = (1/W )hn(xj/W |ej) where hn(•|ej)
is the Dirichlet distribution with parameter vector

8n3
[
(1− 1/n

2
√

2
)(ej/W ) +

1/n

2
√

2

1

2

]
, 8n3

[
(1− 1/n

2
√

2
)(1− ej/W ) +

1/n

2
√

2

1

2

]
.

This is C∞ in bj and gn(0|ej) = gn(W |ej) = 0 and taking pn(bj , b−j) ≡´∞
0
p(xj , x−j)gn(xj |bj)gn(x−j |b−j)dxjdx−j this is certainly strictly positive and

C2. To see that it is strictly increasing observe that increasing bj increases
gn(xj |ej) in �rst order stochastic dominance. Finally, it is shown in the Web
Appendix of Dutta, Levine and Modica (2018) that Pr(|xj − ej | > 1/n) ≤ 1/n
so that we have pointwise convergence at every continuity point of p. Pointwise
convergence on the diagonal is by de�nition.

Step 3: Given p strictly increasing, positive and C2 perturb it to get it strictly
increasing, positive on [0,W ]×[0,W ] and real analytic in an open neighborhood.
By Whitney (1934) Theorem 1 we can extend p to be C1on all of R2. Take an
open neighborhood W of [0,W ]× [0,W ] so that p is strictly positive there. By
Whitney (1934) Lemma 5 for each ε > 0 we can �nd a real analytic function
q(bj , b−j) with |q − p| < ε and |Dq −Dp| < ε on the closure of W. Then de�ne
Q(bj , b−j) = q(bj , b−j)/(q(bj , b−j) + q(b−j , bj)).

Remark: The case of cj is similar but easier. In the �nal step the real
analytic function qj(bj) is not necessarily zero at zero so we de�ne Qj(bj) =
qj(bj)− qj(0).

13. Appendix: Resource Limits

A resource constrained contest on W is a contest success function p(ej , e−j)
together with a pair of cost functions cj(ej) that satisfy the de�nition of being
a contest except that p is required to be continuous and we allow the possibility
that cj instead of being continuous on the entire support is continuous on [0, ej ]
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where ej > 0, cj(ej) = cj < 1, and for ej > ej we have cj(ej) = cMax > 1. Our
goal is to prove:

Theorem 17. Suppose pn(e1, e−1) → p0(e1, e−1), cjn(ej) → cj0(ej) for ej 6=
ej0 are a sequence of resource constrained contests inW , that F1n, F−1n are equi-
libria for n converging weakly to F10, F−10. Then pn(Fjn, F−jn)→ p0(Fj0, F−j0),
cjn(Fjn) → cj0(Fj0) for both j and F10, F−10 is an equilibrium for p0(e1, e−1),
cj0(ej).

Proof. If cj0 is continuous then cjn(ej)→ cj0(ej) for all ej there is nothing new
to be proven. We take then the discontinuous case. There are two new things
that must be shown. First, we must show that if a deviation to ej0 against
Fj0 is pro�table then, because we do not have pointwise convergence at ej0,
there is another deviation that is also pro�table. Second, we must show that
cjn(Fjn)→ cj0(Fj0).

The �rst is simple: if we take a sequence ejm → ej0 strictly from below, the
continuity of p0, cj0 imply that uj0(ejm, F−j) → uj0(ej0, F−j) so that for large
enough m the deviation ejm 6= ej0 is also pro�table.

To prove the second we �rst choose 0 < ε < (cMax − 1)/2. We observe
that for each n (including n = 0) the fact that cjn is weakly decreasing and left
continuous means that {ej |cjn(ej) ≤ cj0+ε} = [0, ejn(ε)] and {ej |cjn(ej) > cj0+
ε} = (ejn(ε),W ] where it is apparent that ej0(ε) = ej0. Moreover, we can show
that limn ejn(ε) = ej0. To see that for any γ > ej0 we have limn cjn(γ) = cMax

implying lim sup ejn(ε) ≤ γ. For any γ < ej0 we have limn cjn(γ) ≤= cj0(γ) ≤
cj0 implying lim infn ejn(ε) ≥ γ.

Second, since p0 is continuous, pointwise convergence of pn to p0 implies
uniform convergence and since W is compact, p0 is uniformly continuous. It
follows that ∆(ε) = inf{0 ≤ e1

j − e2
j |pn(e2

j , e−j)− pn(e1
j , e−j) ≤ ε} is positive.

Third, we show that for su�ciently large n we have

µjn((ejn(ε), ej0 + ∆(ε/2)/2]) = 0.

Suppose that ej ∈ (ejn(ε), ej0 + ∆(ε/2)/2]). Then cjn(ej) ≥ cj0 + ε while
cjn(ej0 − ∆(ε/2)/2]) ≤ cj0(ej0 − ∆(ε/2)/2]) + ηn where ηn → 0. Since ej −
(ej0 −∆(ε/2)/2]) ≤ ∆(ε/2) it follows that pn(ej , F−j)−pn(ej0−∆(ε/2)/2], F−j) ≤
ε/2, while cjn(ej)− cjn(ej0 −∆(ε/2)/2]) ≥ ε− ηn. Hence for ηn < ε/2 it is not
optimal to play ej .

Fourth, we show that for su�ciently large n we have µjn((ejn(ε),W ]) = 0.
To do so we need only show that for su�ciently large n we have µjn((ej0 +
∆(ε/2)/2,W ]) = 0. Since cjn(ej0 + ∆(ε/2)/2) → cMax for all su�ciently large
n we have cjn(ej0 + ∆(ε/2)/2) > 1 and since cjn is non-decreasing cjn(ej) > 1
for all ej ≥ ej0 + ∆(ε/2)/2 . Of course it cannot be optimal to play such an ej .

Fifth we show that µj0((ej0,W ]) = 0. This follows from the fact that it is
the countable union of the sets

(ej0 + |ejn(ε)− ej0|,W ] ⊂ (ejn(ε),W ].
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Sixth, we construct approximating functions c̃jn. Since cj0is continuous on
[0, ej0] we may choose γ < ej0 so that cj0(ej0)− cj0(γ) < ε. Then for ej ≤ γ we
take c̃jn(ej) = cjn(ej) and for ej > γ we take c̃jn(ej) = cjn(γ). Certainly then
c̃jn is non-decreasing and converges pointwise to the non-decreasing function
c̃j0. It follows that the convergence is uniform, hence c̃jn(Fjn)→ c̃0n(Fj0).

Seventh, we bound
|c̃jn(Fjn)− cjn(Fjn)|

≤
ˆ

[0,γ]

|c̃jn(ejn)− cjn(ejn)| dFjn +

ˆ
(γ,ejn(ε)]

|c̃jn(ejn)− cjn(ejn)| dFjn

+

∣∣∣∣∣
ˆ

(ejn(ε),W ]

(c̃jn(ejn)− cjn(ejn)) dFjn

∣∣∣∣∣
=

ˆ
(γ,ejn(ε)]

|c̃jn(ejn)− cjn(ejn)| dFjn

≤ sup
(γ,ejn(ε)]

|c̃jn(ejn)− cjn(ejn)|

= cjn(ejn(ε))− cjn(γ)

≤ |cjn(ejn(ε))− cj0(ej0)|+ |cj0(ej0)− cj0(γ)|+ |cj0(γ)− cjn(γ)|

≤ 2ε+ ηn

where ηn → 0.
Finally, we put this together to see that for all 0 < ε < 1/2 and su�ciently

large n we have

|cjn(Fjn)− cj0(Fj0)| ≤ |c̃jn(Fjn)− c̃j0(Fj0)|+ 4ε+ 2ηn.

It follows that lim sup |cjn(Fjn)− cj0(Fj0)| ≤ 4ε. This proves the result.

14. Appendix: Finite Support

Theorem 18. Suppose that c1(bj) = 0 for 0 ≤ b1 ≤ w1 and if w > 0 we
require that p(bj , b−j) is strictly increasing (so in particular in any equilibrium
µ1([0, w1)) = 0). Suppose as well that cj(W ) > 1. If p(bj , b−j), cj(bj) have
real analytic extensions to an open neighborhood of [w1,W ]× [0,W ] then every
equilibrium has �nite support.

Proof. Take w−1 = 0 and consider

Uj(bj) ≡
ˆ W

wj

p(bj , b−j)dF−j(b−j)− cj(bj).

We �rst show that this is real analytic in an open neighborhood of [wj ,W ].
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For cj this is true by assumption so we show it for the integral

Pj(bj) ≡
ˆ W

wj

p(bj , b−j)dF−j(b−j).

Let W be the open neighborhood of [w1,W ]× [w−1,W ] in which p is real ana-
lytic. Then for each point b ∈ W the function p has an in�nite power series rep-
resentation with a positive radius of convergence r1, r−1for b1, b−1 respectively.
Hence the extension of p to a function of two complex variables has the same ra-
dius of convergence there. Take an open square around bj in the complex plane
small enough to be entirely contained in the circle of radius min{r1, r−1} and
lying inside ofW. The product of these squares is an open cover of the compact
set [w1,W ]× [w−1,W ], hence has a �nite sub-cover. Choose the smallest square
from this �nite set, say with length 2h. Then p(bj , b−j) is complex analytic
in the domain ((w1 − h,W + h)× (−h,+h))×

(
(w−1 − h,W + h)× (−h,+h)

)
.

Hence we may extend Pj(bj) to a complex analytic function in the domain
(wj − h,W + h)× (−h,+h). This is a convex domain, take a triangular path ∆
in this domain and integrate



∆

Pj(bj) =



∆

ˆ W

wj

p(bj , b−j)dF−j(b−j).

Everything in sight is bounded so we may apply Fubini's Theorem and inter-
change the order of integration to �nd



∆

Pj(bj) =

ˆ W

wj


∆

p(bj , b−j)

 dF−j(b−j).

By Cauchy's Integral Theorem since p is analytic
ı

∆
p(bj , b−j) = 0. Henceı

∆
Pj(bj) = 0 so by Morera's Theorem Pj(bj) is analytic, and in particular real

analytic when restricted to (wj − h,W + h)× 0.
Hence the gain from deviating to bj is given by a real analytic function

Uj(bj) − maxj Uj(b̃j). That implies it is either identically zero or has �nitely

many zeroes. We can rule out the former case since maxj Uj(b̃j) ≤ 1 and
c(W ) > 1. Hence Fj must place weight only on the �nitely many zeroes.


