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ABSTRACT OF THE DISSERTATION
ESSAYS ON INFORMATION AGGREGATION AND MARKET
CRASHES
by
Tn Ho Lee
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University of California, Los Angeles, 1992
Professor David K. Levine, Chair

- This dissertation consists of three independent papers which address pfoblems
of information aggregation, market crashes, and equilibrium debt with bankruptcy,
respectively.

Chapter 2 investigates the problem of information aggregation in a sequential
action model. We deﬁning an informational cascade as an event in which the
sequence of a;'ctions converges to a limit and a fully revealing informational cascade

"as an event in which the sequence converges to a limit which is optimal under the
true state. The necessary and sufficient condition for the occurrence of a fully
revealing informational cascade almost everywhere is established.

Chapter 3 models inarket booms and crashes as an informational phenomenon
in which a precipitous stock price drop is caused by a surprise which induces trad-
ing which reveals hidden information dispersed in the economy. We characterize
the dynamics of market crashes through the following four phases: 1) confidence
build-up, 2) mania, 3) trigger and 4) panic. We show that for some prior distri-

butions on the states of nature, there exists a sequence of signals which generates



a price path that includes a market crash.

Chapter 4 investigates the long-term relationship between the borrower and
the lender when.theré is .'a positive probability of bankruptcy. We define the
“credible credit limit” as the debt level beyond which there is no loan with a
positive expected return to the lender. Using this definition, characterizations of
the time consistent equilibrium are provided, if they exist. The result indicates
that a type of credit rationing may exist due to time inconsistency apart from

asymmetric information or the unavailability of enforcement mechanisms.



* Chapter 1

Overview



Chapter 2 investigates the problem of information aggregation in a sequential ac-
tion model. A model in which agents sequentially take actions after observing the
action history and private signal is constructed based on the one in Bikhchan-
dani, Hirshleifer, and Welch(1991). An informational cascade is defined as an
event in which the sequence of actions converges to a limit and a fully revealing
informational cascade is defined as an event in which the sequence converges to a
limit which is optimal under the true state; an informational cascade arises when
agents take similar actions because they have posterior distributions close to each
other and a fully revealing informational cascade arises if agents can infer the
true state from the hisforj of action choices. We relate our definition of informa-
tional cascades to that of Bikhchandani et al. and show that the informational
cascade in their sense always has a positive probability of being non-fully reveal-
ing. The necessary and sufficient condition for the occurrence of fully revealing
informational cascades almost everywhere is established. The necessary and suf-
ficient condition is interpreted using the characterization in Milgrom(1979) and
McKelvey and Page(1986).

Chapter 3 explains market booms and crashes as an informational phenomenon
in which a precipitous stock price drop was caused by a surprise followed by the
revelation of hidden information dispersed in the economy. We show that the mar-
ket may not be able to aggregate information correctly if the agents sequentially
take actions and the choice set is not fine enough to distinguish small differences
in the private information. In particular small indivisibility in the trade unit is
sufficient to prevent accurate information aggregation even when the market as a
whole has enough information to make correct inferences as to the state.

We illustrate the dynamics of market crashes through the following four phases:

1) confidence build-up, 2) mania, 3) trigger, and 4) panic. Each phase is charac-



terized by different set of beliefs of the public and agents who strike trades in the
corresponding phase. We show that for a set of prior distributions on the states
of nature, there exists a‘ sequence of signals which generates a price path that
includes a market crash.

Chapter 4 investigates the long-term relationship between the borrower and
the lender when there is a positive probability of bankruptcy. In the long-term
relationship with a borrower, the lender has a time inconsistency problem because
the lender cannot make a binding commitment with respect to the credit limits.
We examine the consequences of the time inconsistency problem in a two-person

‘game based on a model originally developed by Hellwig(1977).

In contrast to Hellwig who focused on the non-existence of time consistent
courses of action, we concentrate on the characterization of the time consistent
equilibrium when it exists. We define the “credible credit limit” as the debt level
beyqnd which there is no loan with a positive expected return to the lender. Using
this definition we characterize the equilibrium as follows. First, in the case where
the lender has a positive expected return from the loan up to the credible credit
limit, the subgame perfect equilibrium results in a unique outcome in which the
lender always extends the loan up to the credible credit limit. Second, if the lender
has a negative expected return from the loan up to the credible credit limit, there
exists a continuum of equilibria which all result in borrowing which is strictly less
than the credible credit limit. We interpret the results as indicating that a type
of credit rationing may exist due to time inconsistency apart from asymmetric

information or the unavailability of enforcement mechanisms.



Chapter 2

On the Convergence of
Informational Cascades



2.1 Introduction

An action taken by an individual often influences the decision of others made with
its knowledge. In extreme cases it may appear as if the decision-maker ignores his
own private information in favor of the history of previous actions. Bikhchandani,
Hirshleifer, and Welch(1991, hereafter BHW) explain this localized conformity of

' human behavior as an informational phenomenon. If each action is taken based
on the private information as well as public information, the history of action
choices reveals private infqrmation as to the underlying parameter of the decision
problem. Because a loﬁg string of action choices conveys some information about
many random draws of the private signal, the agent may place more weight on
the public information available from the history of action choice.

An intriguing aspect of their result is that an infinite sequence of agents may
be induced to take action which is not optimal if given the knowledge of the true
state; observationally an infinite number of random drawings of a private signal
does not necessarily reveal the true state. Moreover, even if the sequence of actions
converges, the limit may be not only uninformative but also misleading because
it can be the optimal action for an unrealized state.

The present paper generalizes the result of BHW to a multiple action setting
and shows that the informational cascades in the sense of BHW always have
a positive probability >of_bveing uninformative. Our major result establishes the
necessary and sufficient condition for the correct inference of the true state.

We develop our model based on the one in BHW. An infinite sequence of
agents take actions after observing a private signal and the history of past action
choice. The model is formulated as a problem of statistical inference in which the
objective of the agent is to minimize the mean squared error. The action set 1s

represented by a subset of the real numbers allowing an infinite action set.



We define informational cascades as the convergence of the sequence of actions.
The definition differs from that of BHW in that they require an identical action
for any signal while only the convergence is required in our definition. We also
define fully revealing informational cascades as the convergence of the action to
the limit which is the optimal action under the true state.

Our first theorem shows that the informational cascades in the sense of BHW
have a positive probability of being non-fully revealing. The second theorem
establishes the necessary and sufficient condition to guarantee fully revealing in-
formational cascades given any prior distribution; the condition requires an action
set which can reveal the posterior of each agent in a one-to-one fashion. In particu-
lar, a discrete action set always allows a positive probability of non-fully revealing
informational cascades while a connected interval containing optimal actions for
all states suffices to rule it" out.

We can explain the intuition of our results as follows. Given a prior distribution
with most of the probability concentrated on a state, the posterior updated in view
of the private signal is not different from the prior by much. If the agent has only
a few actions available, he cannot fine-tune the action choice according to the
posterior which is only slightly different from the prior. As a result his action
choice will not be different from the previous one. Once this happens, the action
choice has no role in adding information to the history of signal draws.

The action choice in the model has the dual role of revealing the private in-
formation as well as minimizing the mean squared error of the decision-maker.
From the standpoint of information revelation, a sparse action set provides little
means to convey the priv&te information. Consequently the infinite sequence of
private signals adds little to the updating of the posterior distribution and the

whole sequence of agents may end up choosing a wrong action.



Our result exhibits a striking contrast to Banerjee(1990). He shows that non-
fully revealing informational cascades (herd behavior in his terminology) arise
with positive probability even for a continuum action set. His result crucially
depends on the degeneracy of the model; for instance, a concave payoff function
suffices to recover fully revealing informational cascades everywhere, which is an
implication of the piesen£ paper. Hence his result is not robust.

We can interpret our result in terms of characterization derived elsewherein the
lifera.ture. In particular, an action set satisfying our sufficient condition enables
the agent to distinguish one state from another in the sense of Milgrom(1979).
An action set satisfying the condition also satisfies the condition of the stochastic
regularity defined by McKelvey and Page(1986).

The model is formally developed in Section 2.2. Section 2.3 provides the

definitions of informational cascades and fully revealing informational cascades
to be used in the analysis. The necessary and sufficient condition is provided in
Section 2.4. In Section 2.5 we interpret our condition using the characterization

of Milgrom(1979) and McKelvey and Page(1986). Section 2.6 concludes with the

paper.
2.2 Model

At the beginning, a state is drawn randomly from the set of feasible states and
remains fixed throughout. Each agent sequentially take action only once based on
the public information and a private signal to minimize the loss from the action
choice. The public information consists of the history of all actions taken by
predecessors. The private signal which contains information about the realized
state is drawn randomly. It is observed only by the agent taking the action at

that time. The draw of signal is made according to a conditionally independent



and identical distribution given the state.

Initially agents have prior distribution over the states. After observing the
history of actions and the private signal, the agent updates the prior distribution
according to the Bayes’ rule. His action choice is optimal with respect to the
posterior distribution after the updé.ting of the prior.

Formally our model is specified as follows. There are finite number of feasible
states, s = 1,..., 5. There are two signal values, z € X = {1,0}. The states are
distinguished only by the probability of signal z, that is, p1, = Prob(z = 1s) = p,
Then denote po, = Prbb(-a: = 0Js) = 1 — p,. The signal carries information about
the state because p, differs for different states s. Notice that the probability of
the signal z = 1 given state s also denotes the mean of the signal z given state s
because E[z|s] = 1p, + 0(1 — p,) = p,.

Agent n takes an action a from the set of feasible actions, A C R. The action
set A is the same for all agents. The set of feasible actions may be finite or
(countably or uncoﬁnta.bly) infinite but is assu‘med compact to guarantee the
existence of v'optimal action. All agents minimize the same loss function /,(a)

“which depends on the state and the action taken. The information set of agent n
includes the history of actions, h™ = (a!,a?,...,a™!) and the private signal, z".
We use the convention that A! = 0.

We write the prior diétribution given history A" before the signal as u} =
p(s|h™) and the posterior distribution given history A" and the private signal
z™ as 7* = w(s|h™,z"). We also write u™ and 7" to denote (u},p3,...,p4%) and
(73,75, ..., 7%), respectively. The structure of the model including the probability

of the signal values given each state and the initial prior distribution over states,

u!, is common knowledge.

We follow the notational convention that the superscript n corresponds to the



n* agent while the s"ubséripts s and z denote the s** state and the signal z,
respectively.

Agent n solves the following problem:

mip EL@IA", ", ()
or equivalently,
s
min ’}; 7y ls(a). (2.2)

We make a set of assumptions to simplify the analysis.
Assumption 1 The loss function is written as l,(a) = (a — E[z]s])? = (a — p,)>

The assumption simpl_iﬁes the notation substantially without loss of generality.
It is straightforward to extend our result to a general setting under the standard

regularity condition including the concavity of utility function.!

Assumption 2 The probability of the signal, z = 1, is strictly between 0 and 1,

and increases with the state s :
0<p1<p2<...<ps<1l

The first part of Assumption 2 rules out the degenerate case and the second
part implies that the signal, z = 1, is observed more often from a higher state
than a lower state. It is a sufficient condition for the informativeness of the signal.
An assumption is made in BHW for the same reason. The condition here looks
simpler because there are 6nly two signal values possible in the model. It is easy
to see that there isvno loss of generality arising from this feature compared to a

model with many signal values.

1For example, assume that agents maximize the utility function which is a monotone trans-
form of the negative of the loss function assumed in Assumption 1.



Assumptioh 3 The action set A contains the means of signal for all states:

{p1,p2,-..,pPs} C A.

Assumption 3 combined with Assumption 1 implies that knowing the true

state, the agent would take the action which equals the mean of the true state.

2.3 Iﬁformational Cascades

We define the informational cascade and the fully revealing informational cascade.

Definition 1 An informational cascade arises if

lim,_.ocargmin, E[l,(a)|h",z"] = @ € A. (2.3)

Definition 2 A fully revealing informational cascade arises if

lim,_,.argmin, E[l,(a)|h", z"] = &; = argmin l;(a) (2.4)
where 3 is the true state. -

In words, an .informa.tional cascade arises when agents take similar actions
because they have posterior distributions close to each other and a fully revealing
informational cascade arises if agents can infer the true state from the history of
action choices.

The definition of the informational cascades appears distinct from the the one
in BHW; they make the definition in terms of whether the action choice reveals
the private signal. The following proposition shows that their definition implies

~a constant action when informational cascades arise. Because our definition does
not require a constant action for informational cascades to arise but only the

convergence of the action choices, informational cascades in our sense arise if

informational cascades in their sense arise.



Proposition 1 If there ezists an N and h™ such that for all V¥ € X,
a" = argmin E[l,(a)|h",zV] = @ € A,

then for alln > N,

a" = argmin, E[l,(a)|k",z"] = G.

Proof: Fix a history A", and consequently 4", such that the hypothesis holds

true. It suffices to show that
aN*! = argmin, E[l,(a)|pV*, 2" = @

~ Denoting the probability of Ntk agent’s taking action a” at signal z as ¢(aV|z),

the prior of the N + 1* agent can be written as:

WSV = (sl aM)
”(3'hN) Za:EX Pz.Q(aNl$) . (25)
Yo B(t1AN) Toex preg(aV|z)

Under the hypothesis of the proposition, g(a¥ = @|z) = 1 for all z € X. It

follows that the prior of the N + 1° agent is the same as that of the N** agent

because

I‘(sth) Ezex Prs - 1
Etil p(t|AN) Zze){ Pzt 1
p(s|h™)
Ef:l p(t[RN)
p(s|h™). (26)

p(s|R™*)

Also the hypothesis implies that starting with the prior u”, the loss is mini-

mized by choosing @ for any signal £ € X so that

gVt = argnﬁnaE[l,(a)lﬁN+l,zN+1] =g for all zV*! € X.



Since we can repeat the same argument for all n > N, the proof is complete.

" It is interesting to notice that the informational cascades in the sense of BHW
have a positive probability of being non-fully revealing. The next theorem estab-
lishes this fact. Their proposition that informational cascades in their definition
arise with probability 1 for an action set with two elements is equivalent to the
claim that for such an action set there is a positive probability of the occurrence of
non-fully revealing infofma.tion cascades. Indeed it will be shown that any discrete
action set allows a positive probability of the occurrence of non-fully revealing in-

formational cascades. It follows that their result generalizes to settings with more

than two actions without change.

Theorem 1 Pro'b{llimﬂ_,ooaryminaE[l,(a)lh",z"] —az| > 0} > 0, if and only if

there ezxists an N and h™ such that for all 2V € X,
aV = argmin E[l,(a)|hV,zV] = a € A.
Proof: If @ & {p1,---,ps}, then it is obvious that
| Prob{'limn_,ooargminaE[l,(a)lh",x”] —a;| >0} >0,

‘because a; € {p1,...,ps}. Hence we assume that a € {p1,-.-,ps}

Define
argmin, E[l,(a)|h",zV] = @ for all zV € X and
Enz = RY| for alln < N, ‘
argmin, E[l,(a)|k", 2" = 1] # argmin, E[l,(a)|h",z" = (]

and 3§ as the state for which @ is the optimal action, that is, @ = argmin,/;(a). If

there exists an N and AN such that for all V¥ € X,

&N = argmin, E[l,(a)|V,zV] =G € A,



then Prob{Envz} > 0 for a finite N. Moreover, the joint probability of the event

a

Enz and the occurrence of any state is positive because all finite history event has

a positive probability of occurrence under all states. That is,
Prob{€nz, s} >0 forall s€S.

By Proposition 1, when the event £yz occurs, all agents n 2 N will take @ and
cbnsequently
lim,_.coargmin, E[l,(a)|A",z"] = a € A.
Since the optimal action choice is different for different states and all states have
positive probability of being true given the event En g, there is a positive proba-
bility that &; is different from @, that is,
Prob{@ # a;)€nz} = Prob{3 # 3| En3z}

Y uzs Prob{En s, s} 50
Prob{SN;.-} )

It follows that
Prob{|lim,_..argmin, E(l,(a)|p", z"] — ;| > 0}
> Z E Prob{h' # fl;lgN,a} > 0.

a€EAN=1

The sufficient part is proved by contradiction. Suppose there is no finite N for
which Prob{Enxz} > 0. Then for all finite N,

argmin, E[l,(a)|hV, 2V = 1] # argmin, E[l,() A", 2" = 0.

Consequently the history of the action choice reveals the history of the private
signal. It is left to show that the posterior conditional on the history of the private
signal converges to the point mass concentrated on the true mean with probability

1, that is, if the true state is 3,

e n 1 fs=3§
JHEO m(sh ,2") ={ 0 otherwise



The proof is a special case of the strong law of large numbers adapted to the
convergence of posterior. We omit the proof because it is standard.?

Hence if there is no finite N for which Prob{€nz} >0,
Prob{|lim,._*°°a.rgminaE[l,(a)|h“,:c"] —a;| >0} =0,

and the proof is complete. |
Since we are interested in the condition to guarantee fully revealing informa-
tional cascades, we need to relax the definition so that it includes the case in which

the sequence of action choices only converges; otherwise informational cascades

may be always non-fully revealing.

2.4 Necessary and Sufficient Condition

In this section we develop the necessary and sufficient condition to guarantee fully
revealing informational cascades for any initial prior u. We start with a lemma

about the optimal action choice.
Lemma 1 Given a posterior distribution w7 = (w1, 72y .., Ts), the optimal action
18:

& = argmin,,la — E.pl| | (2.7)

Proof: First suppose the action set is a connected interval so that the first

order condition can be applied to Problem (1). The first order condition for

minimizing the mean squared error is

S
Ym(a—p) =0. (2.8)

s=1 -

2For a proof, see DeGroot(1970) p.202.



Therefore & = Y.5_, 7sps = Exp.
~ Next consider the case where the action set is not a connected interval so that
the first order condition is not applicable. It suffices to show that if |a — Exp| <
|a’ — Eqxp|, then Er(a —p)? < Ex(d' - p)?.

Notice that
E.(a— p)? = Exl(a — E.p) + (Exp - P)I"
= Ex(a-— Efrl’)2 +2E.[(a - Exp)(Exp — p)+ Er(Exp— P)g- (2.9)
The second term in the last line of the above equation is identically 0 and the
last term does not depend on the action a. Hence if |a — Exp| < |a’ — E.pl|, then
E.(a — Exp)* < Ex(a’ — Ep)?, and consequently E.(a—p)? < Ex(d'—p) asis

to be shown. (]

" Lemma 1 implies that the optimal action minimizes the distance to the condi-
tional expectation. The next lemma establishes that the conditional expectation

is higher when the private signal is the high signal than when it is the low one.
Lemma 2 For all prior y, Eplp,z =112 E[p|p,z = 0].

Proof: Subtracting the right hand side of the above inequality from the left

“hand side yields:
Elplp,z = 1] - Efplp,z = 0]
— et b} _ o1 (1 — po)ps
T mpe T m(l-p)
s _ S 2
%t:l I“'t(pt SEt=l l‘tpt) 2 0. (2.10)
(i p:p) (e pe(1 = p1))
The proof is complete. 1

Our major theorem provides the necessary and sufficient condition for the

occurrence of fully revealing informational cascades with probability 1 given any



priors. The theorem is stated as an inequality condition to be satisfied by each
point in the action set. To do this, we imagine each point, v, in the action set as
having gaps to its right and left; writing €, as the radius of the gap to the right
of point v a.nd ¢ as the radius of the gap to the left of point v, respectively, an
interior éofnt has both radii equal to 0. Given the notation, we can state the
theorem. The theorem provides a convenient means to check whether an action

set allows non-fully revealing informational cascades.

Theorem 2 Fully revealing informational cascades arise with probability 1 for all

prior p, if and only if for allv in the action set A such that v € [ps, ps41] for some

v

8’
either €, = e =0,
or at least one of the two gaps of v is strictly positive for which

pi(ps — v — €) Pip1 (i1 — v — €)
i~ < -
(1- Ps)(P; “o+é) = (1—pas)(psr1 —v+ &)

Proof: Lemma 1 and Lemma 2 imply that given a prior 4 such that
v— ¢ < Elplp,z = 0] < Elplp,z = 1] <v+e, (2.11)

the optifna.l action is v regardless of the signal received by the agent. It follows
from Theorem 1 that fully revealing informational cascades arise with probability
1 for all priors if and only if there is no prior satisfying the inequality (2.11) above.
Suppose that €, = ¢, = 0. Then the optimal action cannot be v for both signals
because two ‘conditionavl expectatioﬁs in the middle of inequality (2.11) are not
identical. Hence suppose that at least one of the two radii is strictly positive. We
rewrite the inequality (2.11) explicitly in terms of the prior p and the conditional

probability of signals under each state as follows:

o
v—¢€, <

S _ s 2
Zt:sl pe(1 = pe)pe < ZtS:1 eD; <v+€ (2.12)
Y= I‘t(l - Pt) Y1 MePt



There is no prior satisfying the inequality (2.12) if the following system of inequal-

ities does not have a solution:

20
* FSZO
()W Toa b =1
Eg=l"f(l—Pt)(pt""v+€i)20'
yEt:lI‘tPt(pt—-v-—e;)so.

We apply Farkas’ Lerr;ma‘to the above system of linear inequalities with A, =
1,. .8 deﬁoting the dual variables for the first S inequalities, and Agy; and Agya,
those for the equality and ), that for the second to last inequality, respectively.
Then the inequality system (*) does not have a solution if and only if the following
simultaneous equation system has a non-negative solution:

MAAsp = Aspa+ (1 —p)(pr—v+e)r=pi(pr —v - €)

: 2.13
As +As41— Ase2 + (1 —ps)(ps — v+ €)X = ps(ps —v —€}) ( )
As41— Asp2 = 0.

' The simultaneous equation system (2.13) has a non-negative solution if and only
if there is A > 0 such that

M=p&n—v—d%%l—me—v+4N20

¥ (2.14)
As =ps(ps —v—€) — (L —ps)(ps —v+€)A 20
. _  J >0 for t>8 ! s .
Since p: — v + eu{ <0 for t<3, p; — v + € < 0 unless v = p;, in which case
e, =0,
—v—¢€ . .. o1 1 .
and Pi(p ) is increasing in p; with discontinuity at p; = v — e,

(1-pe)(p: —v +¢€)

there exists non-negative A satisfying (2.14) if

ps(ps — v —€) < Pir1(Ps1 — v — €) .
(1-ps)(s—v+e€) ™ (1=pa)(psnn —v+e)



Therefore the condition is the necessary and sufficient condition for fully revealing
informational cascades and the proof is complete. |

There are a few corollaries following immediately from Theorem 2. If the
action set is the whole interval [p;, ps], then fully revealing informational cascades
arise with probability 1 for all priors because it is the case in which ¢ = e =0,
for all v in action set. On the other hand, if the action set is disconnected at

any of the means p,, then non-fully revealing informational cascades arise with a

positive probability. We state these facts without proofs.

Corollary 1 Fully revealing informational cascades arise with probability 1 for

all initial prior u, if the aétion set A contains the interval [py,ps] :
[plva] C A

Corollary 2 If the action set does not contain an open interval between p, and
ps such that for some s, p, is one of its end points, there are initial priors p

generating non-fully revealing informational cascades.

Corollary 2 implies that a discrete action set always allows a positive proba-

bility of the occurrence of non-fully revealing informational cascades a fortiori.

2.5 Alternative Characterizations

The necessary and sufficient condition derived in Theorem 1 can be characterized
by alternative conditions discussed elsewhere in the literature. Examining our
condition in view of the alternative characterizations sheds lights on understanding
the role of action set in our model.

Milgrom(1979) derived the necessary and sufficient condition for the conver-

gence of competitive bids to the true value of the object in an auction model.



The condition requires that every state can be distinguished from other states

using a signal which is the private information. He defines that “state s can be
distinguished from state § using signal a” if i) P(s) = 0 or ii) P(3) > 0 and

inf POEEl) _ (2.15)

E P(a€ E|5)
where F is an event.

In our context the signal in the above definition can be understood as the
history of action choices and the private signal. The action set satisfying our
condition provides a sequence of signals which enables the agent to distinguish a
state from another. Therefore the posterior reveals the true state a.e.

Comparing his theorem with ours, we can notice an important distinction.
The mode of convergence in his theorem is in probability, while we have almost
everywhere convergence so that our result is stronger than his. The distinction
comes from the fact that the strong law of large numbers used in our theorem
effectively shows that condition (2.15) is satisfied with liminf instead of inf. In
turn we ca.nv apply the strong law of large numbers thanks to the sequential struc-
tﬁre of our model; because the action is taken sequentially with the knowledge of
the previous action history, each action choice is made with the knowledge of the
previous information if the action set satisfies our condition. In other words in-
formation accumulates in our model which feature Milgrom’s auction model does
not have.
| Alternatively we can interpret the occurrence of non-fully revealing information
cascades using the condition derived in McKelvey and Page(1986). Their main
theorem says that if the public information satisfies stochastic regularity, then
agents share the same posterior at an event which is common knowledge. .A
function is defined stochastically regular if and only if it assigns different values

to two distributions one of which stochastically dominates the other. If the action



set satisfies the condition of Theorem 2, then the action history which is the
public information in the model is stochastically regular using their terminology.
Hence we can apply their theorem proving that a convergent sequence of action

necessarily generates the same posterior among the agents when it is common

knowledge.

2.6 Conclusion

The presenf paper analyzed the problem of information aggregation in a sequen-
tibal action model. Our result characterized the action set which guarantees fully
revealing informational cascades a.e.

The sequential action model in the paper exhibits a remarkable property in
aggregating information; if the action set satisfies our condition, the action se-
quence converges to the optimum under the true state with probability 1. Also

it is easy to see that fully revealing informational cascades will not be fragile to
small perturbation because in fully revealing informational cascades a long string
of action choices reveals a long string of signal draws which is not shattered by a
small new information.

Our result has an interesting implication for the claim that informational
cascades characterizes the initial public offerings (IPO) of securities. In IPO,
variable-price sale is prohibited by the SEC. It has the effect of promoting non-
fully revealir.xg informational cascades because buyers have a restricted action set
as a consequence. If the issuer is better off with less information available to
the purchasing public, the issuer would not be against the fixed-price sale which

promotes non-fully revealing informational cascades.?

3See Welch(1991) for an interesting discussion of the phenomenon.
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Chapter 3
Market Crashes and
Informational Cascades



3.1 Introduction

Historically, there have been a few big security price falls which have occurred over
a short period of time. These events, termed market crashes, pose a challenging
puzzle to economists because in the absence of substantial change in the state
of nature, rational economic behavior does not predict such sudden changes in
the price. More si)eciﬁcaily there are two apparently contradictory aspects in the
phenomenon, first the optimistic movement of the market before the crash and
second the pessimism which is revealed to have existed.

This paper explains the market crash as a failure in the information aggregation
in the security market due to small friction in the trading procedure, that is, the
indivisibility of trade unit. Many small errors due to small friction in the trading
procedure leads to a big crash through the mechanism of informational cascades.

Informational cascades are phenomena where a sequence of agents take similar
actions as they try to exploit the information available from the history of previous
action choices. When a sparse choice set is combined with the sequential structure
of decision making, the history of action choices may not reveal private information
and the market fails to arrive at the right price. If a small further information
arrival can make the agents suspicious of the previous history, the informational
cascades may unwind to create a market crash.

We construct a model in which information is dispersed throughout the econ-
omy in the form of private signals and each agent makes an investment decision
based on his own private information and the history of previous agents’ decision.
Because the price of the security is set by a market maker equal to the expected
fundamental value of the security c;)nditional on the history of trade orders, the
public belief conditional on the history is reflected in the price. If there is a sud-

den change in the public belief, then the price may change drastically which is



described as the market crash.

We illustrate the dynamics of market crashes through four phases: 1) con-
fidence build-up, 2) mania, 3) trigger, and 4) panic. In the illustration of the
market crash through to the four phases, we focus on how the market may fail
to aggregate information before crash although correct information is available to

“the market as a whole.

Each phase is characterized by sets of public beliefs prevailing at the beginning
and at the end of the phase and the sequence of private signals underlying trade
orders made in each phase. Oﬁr major theorem establishes that given initial public
beliefs satisfying the condition for the first phase, the sequence of signals specified
in the cha.ré.cterization generates the price path of a market crash.

An example is used to show how the sequence of private signals satisfying
the characterization of the theorem generates the price path of market crash. An
important distinction is made between the case where the price drops due to a bad
state of the world and the case where the price drops due to a misleading signal
in a good state of the world. In the bad state case, the price drop is permanent
because theré are many signals bearing on the bad state, while in the good state

| case the price bounces back soon as there are more signals indicating the good

state. Also we compute the price path for a smaller indivisible trade unit to
see the impact of the size of the indivisibility. We can confirm that the smaller
the indivisibility is, the more likely it is that the market will correctly aggregate
informa.ti‘()l.i.

There have been numerous attempts to explain the international market crash
of October 1987. Most notably there have been attempts to find the source of
the market crash in the trading strategy. Genotte and Leland (1990) and Jacklin,

Kleidon, and Pfleiderer (1990) explain the market crash by the asymmetric infor-



mation as to the amount of portfolio insurance. Jacklin and others focus on the
issue of failure of. infofmation aggregation while Genotte and Leland focus on the
discbntinﬁify of price paths. Although they provide logically consistent explana-
tions, the data of the 1987 market crash indicates that the amount of portfolio
insurance was smaller than expected which is the opposite of their hypothesis.
Moreover, the crash was observed in countries without portfolio insurance (Roll
(1989)).

The rest of the paper is organized as follows. The next section explains the
stylized facts of market crashes. It identifies the puzzle to be resolved and provide
"the intuition of our explanation. Section 3.3 formalizes the intuition in a model
with a sequential trade structure and an indivisible trade unit. Section 3.4 char-
acterizes the dynamics of market crashes and establishes that the characterization
generates market c:a.éhes..' An example simulates the model for a set of param-
eters. We discuss important features of our model and relate them to historical

events in Section 3.5. Section 3.6 concludes.

3.2 Stylized Facts
Most market crashes are characterized by the following three stylized facts.

1. At the time of the market crash, no major event changing the state of nature

happens.

2. Before the market crash, the price rises steadily for a substantial length of

time.

3. After the market crash, the price remains low for a substantial length of

time.



The first stylized fact is an essential feature of market crashes; without this
feature there is nothing intriguing about these events because prices should change
with a big change in the state of nature such as a war or a bad harvest. Under
the presumption that the first stylized fact is valid, the second one and the third
one seem to contradict rational expectations. Given enough time to reveal in-
formation, the market should have learned the correct underlying parameter of
the security price so that such a big price fall should not occur and subsequently
sustain for a long time. On the other hand if the price drop is triggered by a
trading strategy independent of the state of nature, there is no reason why prices
should not revert to a high level before long.

The puzzle we want to explain in the present paper is how information can
remain hiddgn from the market when the collection of private information would
provide correct information as to the state of nature. In particular we argue that
market crashes can occur due to the failure in information aggregation even when
agents are rational expected utility maximizers.

Our explanation of the market crash relies on the concept of informational cas-
cades. If investors make investment decisions after observing the history of previ-
ous decisions, they would rationally attempt to exploit the information available
from the history. Because the history provides information as to many investors’
private signals, each individual places only a small weight to his own information.
Therefore two agents making decisions in a row would make similar decisions be-
cause the difference in their private information is dominated by the same public
information which they both take into account. If the choice set has only a few
elements, then similar decisions rna.y become identical. We call this phenomenon
of similar action choice the informational cascades. It can be shown that the in-

formational cascades can be uninformative and fragile if only such a sparse choice



set is available (Bikhchandani, Hirshleifer, and Welch (1991) and Lee (1991)).

Using the concept of informational cascades the market crash is modelled as
an event where the uninformative and fragile cascade is reversed by the revelation
of hidden information. The uninformativeness and fragility of the informational
cascades in the model follows from the sparsity of the choice set. The indivisibility
of trading order provides the reason why the choice set is not fine.

The indivisibility of trade unit in the model is one of the fundamental institu-
tional structure of the security market. For instance, New York Stock Exchange
(NYSE) has a round lot market and an odd lot market in addition to the market
for block trading (upstairs market). The round lot market in which trade orders
can be made only in the unit of 100 shares is responsible for most volume of
trade. The odd lot market handles trade orders smaller than 100 shares but the
trading volume amounts to a small portion of the total trading volume of NYSE.
Therefore the informational flow would be mostly from the round lot market to
odd lot market and not vice versa. Since the informativeness of the informational
cascades depends on the market in ‘which most information is revealed, the indi-

visible unit of trade in NYSE can be regarded as 100, although our result holds

true for even smaller unit.

3.3 Security Market with Indivisible Unit of
Trade

There is a risky security which pays its owner a state-contingent payoff, v,, in the
future. The security is traded in a security market to a sequence of agents who
want to use it for smoothing the consumption between the present and future.
The market has a market maker who deals with a sequence of agents. The market

maker trades with only one agent in each round. He posts a price, p,, to n*



agent and fills any order, Zn, placed by the trader at the price. After each round
he can update tHe price and he updates the price so that it equals the expected
fundamental value of the security conditional on the information available from
the history of previous trading orders.! The market maker always has enough
inventory of the security and cash to satisfy any finite (short or long) order.?
Trading is restricted to take place only at integer multiples of indivisible trade
unit, d.

Initially a state pertaining to the fundamental value of the security is drawn
randomly according to a prior distribution which is common knowledge in the
market and stays fixed throughout. The market maker and traders do not know
the realized state but each trader is given a private signal, 8, drawn independently
according to a conditional probability distribution, gy,, given a state s.

Agents are risk averée with an identical utility function which is additively
separable over time. They allocate an identical initial wealth, W, to the riskless
current consumption, c,, and to the risky investment, z,, which gives the fu-
ture consumption. When they make the investment decision, they maximize the
expected utility conditional on the information available to them. Each agent’s
information set, §,,, contains the history of prices and his own private signal, that
is, U = {p1,---,Pn; On} = {hn; 0n}, where by, = {p1,---,pn}, and hg = 0.

Agent n’s investment problem is written as:

max_ E[u(c,) + Bu(vz,)|] (3.1)

enZ2n€Z

s.t. ¢, + ppzn < W.

!Brennan and Thakor(1990) employ a similar model of the security market. In their model,
the market maker does not take his own position but only crosses out corresponding trading
order while the market maker in our model trades on his account.

2This simplifying feature of our model is not crucial in deriving the result. Alternatively we
can work with changing inventory of security and cash after each trading round imposing ad-hoc
allocation rules when the order cannot be filled with the inventory.



where 8 dénétes the common dismﬁnting factor, and Z is the set of integer mul-
| tiples of the indivisible trade unit, d.

In the following we use 2, to denote the optimal solution to problem (3.1) and

z, to denote the solution to problem (3.1) without the restriction on the trade

unit. We make a.few assumptions to simplify the analysis and notations.

A_ssumption 1 Agents have the power utility function and the discounting factor

of 1:
u(c) = %71, v<1,
B=1
The power utility function has the constant relative risk aversion of 1 — 7.

This feature makes our result robust to scale changes in the initial wealth and the

indivisible trade unit so that only the relative magnitude matters in the analysis.

Assumption 2 There are two states with increasing fundamental values of the
security, vg < vg, and the initial prior probability distribution of the states,
(4%, u%), is non-denegerate:

0 < up,pg <1

- The second part of Assumption 2 implies that each state, s = B (denoted by B
meaning “Bad”) or s = G, (denoted by G meaning “Good”) has a strictly positive
probability of realization. Because there are only two states, we write u% = u"

and u} = 1 — u™ where the superscript indicates that the beliefs are those of n'*

agent. Similarly we use the notation 73 = 7™ and 7§ =1 — 7",
G B

Assumption 8 There are 4 signals whose probability distribution conditional on
states is non-degenerate and satisfies the strict monotone likelthood ratio property
(MLRP):

fors=B,G and § =1,2,3,4,



1> q¢, > 0 such that

>
1] 926 q93G G

QB @B GB U8

The monotone likeli_hood ratio property is a sufficient condition for the infor-
mativeness of the signal. We will alternatively call the four signals , § = 1,2, and 3
by R, L, M, and H standing for “Rare,” “Low,” “Medium,” and “High,” respec-
tively.

Notice that the prior p", the posterior 7", and the optimal security purchase z,
are random variables whose values depend on the realization of the price history
and the ﬁri?a.te signal. We often use the notation p™(k,), 7*(Q,) and z,({2,) to

indicate this functional relationship.

Lemma 1 Let z,, denote the solution to problem (3.1) without the restriction on
the trading unit. Under Assumptions 1-3, the n'* agent’s optimal solution to the
investment problem (8.1) without the restriction on the irading unit is given as:
Wi
Pn
T 4 [Tl

Appendix contains the proof of the lemma.

Tn =

Lemma 2 Given any price history, h,, or equivalently a prior, u*, the posteriors

of the n** agent are ranked by the private signals in the sense of the first order

stochastic dominance:
7" (ho; R) < #%(hn; L) < 7™(hy; M) < 7" (hn; H),

where the inequality ordering is equivalent to the ordering by the first order stochas-

tic dominance because there are only two states.

Lemma 2 follows from Assumption 3 (MLRP) whose proof is provided in Mil-

grom (1981).



Lemma 3 Given any history, h,, or equivalently a prior, u*, the optimal secu-
rity purchases both with the restriction and without the restriction, z, and z,,

respectively, are increasing in the signal 6 :
2Zn(hn; R) < 2u(ha; L) < 2a(hn; M) < zn(hn; H),

and

Tu(hn; R) < Tn(bn; L) < To(hn; M) < zo(hn; H).

Proof: We first show that z,, is increasing in the signal. Notice that }_, 77v] is
increasing in 8 by a well-known theorem in Milgrom (1981) because 7" conditional
on different signal is ranked by the first order stochastic dominance from Lemma
2 and v” is an increasing function. The denominator in the expression for z, in
Lemma 1 is decfeaéing iﬁ 0 because [¥°, 1r:'v;7]"7éT is decreasing in 8 for v < 1.
Therefore z, is increasing in 0.

The weak inequality for z, in the above lemma is the consequence of the
indivisibility of the trading unit. This weak inequality plays a crucial role in
preventing the accurate informatién aggregation in the analysis. The detail will

be provided in Theorem 1. ]

3.4 Market Crashes

This section analyzes the dynamics of market crashes. We illustrate the crash
as proceeding in the following four phases: 1) confidence build-up, 2) mania, 3)
trigger, and 4) panic. Each phase is characterized by a set of beliefs prevailing in
the public and a set of signals'upon which trades take place. Our main theorem
establishes that there exists a set of priors and a set of signals satisfying the

characterization which generates a price path for the market crash.



Phase 1 Confidence Build-up: Given a public prior u° such that
2(u% H) > 2(p% M) 2 2(u% L) > (1% R),

a sequence of agents with signal H make trading orders until the public belief u©B

satisfies:

2(uCB; H) = 2(u°%; M) > 2(u°®; L) > 2(u°"; R).

Initially consider a market with a dispersed prior such that agents with dif-
ferent private signals make different trade orders despite the indivisible unit of
trade. In particular, it is necessary that the agent with the most favorable sig-
nal H can make distinguishable trading orders to change the public belief in the
direction of optimism. Given such a public prior belief, a sequence of optimistic

-trade orders will bid up the price because the market maker sets the price equal
to the expected fundamental value of the security. The rise in the security price
reflects the movement of the public belief into optimism which describes how the
market build up conﬁden_cé from the trading orders.

This first pha;e pushes the market belief into optimism until the public belief
places enough probability weight on the good state. The phase is completed when
the trade order from the less optimistic signal M does not distinguish itself from

the one of the signal H due to their similarity and the indivisibility of the unit of

trade.
Phase 2 Mania: Given a public prior u°2 such that
2(u°%; H) = 2(u°%; M) > 2(u°®; L) > 2(u°%; R)

a sequence of agents with signals either H or M make trading orders until the

public belief uM satisfies

-z(uM;H) = 2(uM; M) = 2(u™; L) > 2(u™; R).



Then a sequence of agents with signals either H or M or L make trading orders

without violating the last strict inequality above.

In the mania phase agents may appear irrational although they are making
rational choices. The phase starts with the public prior placing enough probability
on the good state that even without the indivisibility of the trade unit, the trade
order from the signal M is close to the one from the signal H. Hence the trade
orders will not be dis‘tin_ghishable under the restriction of the indivisible trade
unit. An‘importz;mt consequexice of this non-distinguishability is that no matter
how many traders make trading orders with the signal M, they do not reveal
themselves as such in the market but only contribute to push the public belief in
the direction of optimism.

As the agents with signals either H or M make trading orders, the price will
go up further as the expected fundamental value of the security goes up due to
the higher probability of the good state inferred from the trading order. If this
sequence is long enough, even traders with the skeptical signal L come to place
great probability weight on the good state. As these traders join the market,
the price remains high because their trading orders do not distinguish themselves
due to the similarity of the trading orders and the indivisibility of the trade unit.
Consequently the market fails to correctly aggregate the information available to

the agents in the market.
Phase 3 Trig_éer: Given a public prior uM satisfying
2(uM; H) = 2(pM; M) = 2(u™; L) > 2(4™; R),
an agent with signal R make a trading order resulting in the public belief satisfying

2(u H) = 2(u"; M) > 2(u"; L) 2 2(p"; R).



Imagine a signal which is observed only rarely but implies the bad state very
strongly once observed. In particular we do not observe many traders with this
signal. Assume that the probability of bad state conditional upon the observation
of such a signal is much bigger than that of the good state. If this signal is to
reveal a new information, the market belief should not be concentrated too much
on the good state that even the rare signal cannot make a distinguishable trading
order. However, given any non-degenerate prior, we can always find a conditional

- distribution so that the trade order conditional on R can be distinguishable from
others. The information of this rare signal drives down the price because the
market maker adjusts the expected value of the fundamental taking account of
the big conditional probability of the bad state. If the price drops enough to make

the trade orders from the signal L distinguishable, the market is ready for the next

phase of panic.
Phase 4 Panic: Given a public prior uT such that

2" H) = 2(u"; M) > 2(u"; L) > 2(u"; R)
a sequence of agents with signal L make trading orders.

Given the prior which distinguishes the trade orders from the signal L, agents
with such a signal reveal themselves as they make trading orders. If the state is
indeed bad, it is more likely that more traders have the signal L so that price
drops further following the initial drop in the trigger phase. It is important to
notice that agents with the signal L could not be distinguished before trigger so
that they make the same choice as those with the more optimistic signal while
after the trigger they assess the probability of the bad state big enough to make
distinguishable choices. It is conceivable that the price drops very rapidly because

there are many agents who took the optimistic position despite their pessimistic



signal in the mania phase and consequently try to unwind their position at the
surprising news.>

The characterization of the last phase makes it clear that once a price drop
is triggered by the rare Signal, the price would drop further if the true state is
ba/d; becé.use under the bad state there are more agents with the signal L. In
contrast, when the true state is good, the price drop would be temporary even if
it is triggered by the rare signal because it cannot be supported by many agents
with the signal L. |

Our main theorem establishes that given a prior u° satisfying the initial con-
dition of Phase 1, the sequence of trading orders specified in each phase generates
the sequence of public beliefs chara;cterized above. First we introduce a few no-
tations for the history of signals underlying the price history. {6}V denotes a
history of prices possible from the sequence of the signal 6 of length N, that is,
{8}~ = {6, ...,06}. There may be more than one argument inside the curly bracket
in the case the same price. history is possible from the sequence composed either
of the sighéls inside the bracket. For example, { H, M}, denotes the price history
when the traders with either H or M make N trades in a row. This history is
possible when the market cannot distinguish two trade orders by the underlying

signals because of the indivisible unit of trade. We begin with a few lemmas to

be used in the proof of the theorem.

Lemma 4 The likelihood ratios of states given a realization of signal satisfy the
following condition:

Iy <lgm <lgmr <1

where Iy = T8 1 BV AMB g uBtOMB T dLB

HM }
qHG quG + qmc’ quc + 9mc t 916

3Due to the difficulty of designing the optimal strategy under the possibility of unwinding
a position once taken, this scenario is formally assumed away in the analysis; we assume that

each agent makes only one trade order in the whole game.



This is an easy consequence of the monotone likelihood ratio property. We

omit the proof.

Lemma 5 Given the initial prior u°, the public belief u after the history {0}V is

given by:
1
0, —
KO0 = T =17

where ly denotes the likelikiood ratio of states as in Lemma 4 given the signal(s) 0.
Moreover, the publié belief is increasing as the signal inferred from the trade order

increases in its favorableness: given a non-degenerate prior, u°,
p(u® H) > p(p®; {H,M}) > p(p% {H, M, L}) > 4°.

Proof: After observing the trade order, the market maker updates the belief
by computing the probability of the trade order from each possible signal. Given
the initial prior of u°, suppose the market maker inferred that the same trade
order can be made from any signal in the set ©. Then his posterior belief of the

good state is computed by:

o. _ #°(Xoee 06)
mps {0 ‘e on = 1 (oo 906) + (1 — 1°)(Loce 968)°

Dividing the numerator and the denominator of the right hand side by Y sce qsc

yields,
0. p°
p(p’;{0€B}) = B e’ (3.2)

The second part of the Lemma follows because the likelihood is ranked as in

Lemma 4.

To prove the first part of the lemma, rewrite the updating equation (3.2) for

nand n—1:

pt = p(p" 5 0) (3.3)



n-1

_ [
e (a1
B 1

14+ /e =1)l

Taking the reciprocal of both sides of equation (3.3), we get

1t = 1=lg+1/p"?
= (l_l‘)(1+"'+13-1)+13/,‘0 (34)
= Q- +5/° '
= 1-0Q1-1/s.
"and the lemma follows. 1

In the following theorem, we assume that the wealth of the agents W is an
integer multiple of 2vgd. -The implication of the assumption is that if the true
state is known to be G with certainty, the optimal decision with the restriction

on the trade unit is the exact solution without the restriction, that is, z, = z,.4

Theorem 1 1. There exist uT > pM > u®B such that

for pM > p > uCB,

z(p; H) = z(p; M) > 2(p; L) 2 z(p; R)
and for pT > p > pM,

z(p; H) = 2(p; M) = 2(p; L) > z(u; R).

2. There ezist finite integers N°B, NM, and NT such that
u®F = p(u® HYY),
u™ = p(u®8; {H, M}™Y),
and pT = p(u™; {(H,M,L}"").
4This assumption does not affect the result but the proof is affected for a boundary case

where the agent is indifferent between two points in the restricted domain for the trading order.
The proof of this boundary case is not provided because the reasoning is almost identical to the

general case.




The proof of the theorem uses a technical lemma. The proofs of the lemma
and the theorem are provided in the appendix.

The theorem gst_a.blishés that the sequence of signals satisfying the characteri-
zation generates a price path of market crash. The next example demonstrates the
transition of the market crash for a set of parameters. In particular it shows how
the informativeness of cascades depends on the size of indivisibility and underlying

state.

Example
There are two states with fundamental values {30,40}. Each trader has identical

utility function with a constant relative risk aversion, u(c) = -"_—;'—, v = .5. Other

data contain:

W =1, 000, 000,

0001, 00001
SR I A 45
¢=lal=1] 35 25 ’
15— .0001 .3 —.00001
u’ = .5.

For comparison we compute the price path when the indivisible trade unit is
given as 10 and when it is .5; the smaller the indivisibility is, the harder it is for
uninformative cascades to arise.

We consider two cases, one for bad state and one for good state. The states
are distinguished by the number of each signal in such a way that the frequency
of each signal in the sample path is the approximately the same as the conditional
distribution of the signal; for instance, the sample path of bad state has 70 % of
signal L, 15 % of M, and 15 % of H, respectively. The signals are ordered symmet-
rically and at the center 'w"e place the signal R. The first half of the sample path

is ordered so that the arrival of the private signal confirms the characterization of



each phase, that is, signal H is placed at the start to be followed by M and then
L.

The price path computed for the sample paths and trade units are illustrated
in Figure 1 through Figure 4. The price path in each figure is drawn by the solid
curve, while the step function below in dotted line describes the sample path of
the signals upon which each trader make trade order. In Figures 1 and 2 which
corr‘espond'to the bad state, there are less of traders with the signal H and M
which is reflected in the short length of the first two steps. In Figures 3 and 4 for
the good state, there are more traders with these favorable signals.

Figures 1 and 2 are distinguished by the size of the indivisible trade unit.
Figure 1 has 10 shares as the minimum trade unit while Figure 2 has .5 shares.
The same applies to Figure 3 and Figure 4.

In Figure 1 the market maintains a high price until .the signal R arrives al-
~ though there have beeﬁ many tradérs with the signal L. This is possible because
| uninformative cascades develop early by a few H signals and the trade orders made

by L signal traders are not distinguished as such due to the indivisible trade unit.
In contrast Figure 2 shpws that price falls as soon as the number of L signal reaches
a substantial level so that the market detects the private information correctly.
F igurés‘3 and 4 exhibit a similar phenomenon. In this case the distinction lies
in that the price drop after the signal R is very short for a smaller indivisibility.
This can be explained by the fact that in Figure 4 with smaller indivisibility the
market detects more signals bearing on the good state before the uninformative
cascades develop so that small number of L signal does not reverse the price path.
Therefore the smaller the indivisibility is, the less fragile the cascade is.
Comparison of Figure 1 and 3 shows another interesting feature of the model.

In Figure 1, crash is permanent because there are more L signals reflecting the



true state while Figure 3 has only a temporary price fall because more good news

prevail in the market. Therefore the market crashes characterized by the stylized

facts are likely due to informational problem.

3.5 Discussion

In the previous section, we characterized the market crash as a failure in aggregat-
ing information dispersed in the economy. Agents in the model are described as
acting rationally based on all information available at the moment of investment
decision. Nonetheless, they fail to aggregate their private information correctly
because of the indivisibilitsr of trade unit.

A difficulty of an explanation relying on indivisibility like ours lies in that
although each agent may make an error due to the indivisibility, small errors may
be canceled out at the equilibrium. The informational cascades phenomenon dﬁe
to the indivisibility demonstrates that small errors may accumulate systematically
instead of canceling out when agents move sequentially. In contrast, small errors
would cancel out if all agents move at once and the market locates the equilibrium
price based on the total information. Therefore the model suggests the possibility
of a serious flaw in the informational role of the market when the market is made
sequentially.

Our model does not derive from the usual story of informed trade and lig-
uidity trader. Compared to those models, there is less informational asymmetry
in the model, yet the market does not aggregate information correctly. In this
sense we can say that our model is based on the minimal amount of informational
asymmetry. On the other hand the indivisibility is a necessary condition for
informational cascades in the model. Indeed without the indivisibility, even mod-

els with asymmetric information between informed traders and liquidity traders



would not generate the sample path of price as in our model because although
the informed traders want to choose the same strategy as liquidity traders, the
liquidity traders do not have such incentive so that the true information would
be reﬂected in the price eventually which is the standard result of the rational
expectations model. Hence our result relies more on indivisibility of trade unit
than asymmetric information.

An alternative reason why small errors may accumulate systematically can be
provided by a degree of bounded rationality on the part of the market maker. The
market maker has the role of interp'reting private signals underlying trade orders.
If the market maker has only a limited capability of making distinction between

| slightly different two trade orders, the price posted by the market maker may not
reveal the information available from the trade orders, resulting in informational
cascades.

The sequence of signals in the characterization may appear very restrictive;
it isi neceésé.ry that agents with favorable signals move first to set an optimistic
tone for the market. However, the restrictiveness in the arrival order underscores
the fact that the phenomenon would not be observed too often. Moreover the
condition characterizing the trade orders in each phase can be relaxed to allow
the price to evolve through ups and downs before going up high. It is worthwhile
to note that as we have more ups and downs, more information would be revealed
so that the uninformative cascades Would not occur as easy as otherwise.

The transition of market crash illustrated in the model is standard among real
world investors who do not subscribe to the efficient market hypothesis. They
usually postulate the transition of market as “Accumulation,” “Distribution,”
and “Liquidation” which correspond roughly to confidence build-up, mania, and

panic in our model. The important difference is that the same pattern can be



generated by ra.tiona.i behavior of market participants.

After the market crash of 1987, most attention was given to program trad-
ing, especially portfolio insurance. There have been many attempts to formalize
the problematic aspect of the portfolio insurance. Notable are Genotte and Le-
land (1990) and Jacklin, Kleidon, and Pfleiderer (1990) which is closely related to
Grossman (1988). Gehotté and Leland focus on a different aspect of the problem,
that is, they explain the discontinuous price fall during the market crash, while
we are concerned with how all the information bearing upon the bad state can be
hidden in the market before the market crash. Jacklin and others provide a differ-
ent explanation for the failure of information aggregation; they follow Grossman
to formulate the informational problem due to the portfolio insurance. Accord-
ing to their explanation, the price was maintained high before the crash because
the market did not realize that the strong demand came from portfolio insurers.

- Although they succeed iﬁ generating a pattern similar to the market crash, the
evidence about the amount of portfolio insurance during the market crash of 1987
indicates the opposite; after the market crash, the surprise was not that there
were more portfolio insurérs than expected, but there were less. Therefore their
explanation is no£ éonsistent with the data. Indeed it is possible that the market
has been relying on the portfolio insurance more than it should in maintaining
high price.

Another weakness of the explanation relying on portfolid insurance is that
the strategy of portfolio insurance is not endogenously derived. The theory of
portfolio insurance is developed based on the assumption that the price follows
a stochastic process independent of the strategy. But the model predicts that
the price path may not be independent of the strategy so that the optimality of

the portfolio insurance strategy cannot be internally established. In contrast our



niodel is based on the optimizing behavior of agents so that we do not derive the
result from any exogenously given behavioral rule.

An important observation is that a small information revelation can bring
about a great consequence if the market cannot aggregate information correctly.
Indeed it is only one trade order in the trigger pha.se that brings out the whole

revelation of hidden information in the model.

The fact that the price fall began in the week before the market crash in 1987
can be explained by the result. When the rare signal is revealed, the price begins
to fall and subsequently cr-_ash occurs only when substantial number of low signals
are revealed to the market.

Our result accords well with the claims of many traders that they were skep-
tical during the price rise. Because many agents with low signal may have been
induced to buy at high price ignoring their private information due to uninforma-

tive cascades, they would regret their purchase once the state is revealed.

3.6 Conclusion

This paper explains the market crash by the failure of information aggregation
due to the indivisibility of trade unit. The result demonstrates that small errors
due to small friction may systematically accumulate to a big blunder instead of
canceling out one another.

Although it is hard to subject the theory under an empirical examination
because the market crash is fundamentally a rare event, it does have some testable
irhplications. First in a market of sequential structure like ours, the past history
of price contains information not available from the current price. This is in
contrast to the well-known efficient market hypothesis. In particular, there is a

bigger probability of price reversion if the past price history exhibits a monotone



trend in which it is likely .that uninformative cascades has developed by a small
number of early trade.ordérs.

Second our theory has bearings on the price clustering which is an important
empirical regularity. The real stock market has regulations on the price grid to
prevent arbitrage attempts to exploit other trader’s order by timing. Although
there is a good reason underlying the regulation, the market cannot extract the
private information continuously from the individual traders if the price change
discontinuously. In turn the price may cluster more often because the uninfor-
mative cascades develop easily due to less information available from the price

“history.

Our model provides a policy implication in designing a more efficient capi-
tal market. By executing more orders at once, we can avoid the distortion of
the individual iny&stnien_t "decision due to the previous uninformative history. In
particular the auction mechanism which is employed when a substantial imbal-
ance exists in the market should be considered with more significance because it
alleviate the problem from the sequential structure of the market.

Finally according to the theory, the market crash is not a completely avoidable
event by ruling out a particular trading strategy as long as the market has small
friction such as the indivisible trade unit. The future research should be focused

on how to minimize the probability of its occurrence and the magnitude of its

adverse effect, should it happen again.



3.7 Appendix

Proof of Lemma 1: After substituting for ¢, by W — p,z, from the constraint,

the first order condition for the problem (3.1) is written as:
—pntt (W — ppz,) + BE[vu'(vz,)|2] = 0.

Usiﬁg the fact that u'(c) = ¢! and # = 1 from Assumption 1, we rewrite the

condition as:

(W = pnz,)" ! = =17 ‘;(”-3’")‘7-1 .
n

Because z,, does not depend on s, the condition is equivalent to

2 n,,v
_ ™Y
(W = poz,)" ! = 2)71 =1 TV .

Raising both sides to the power of ;}T and rearranging the terms yields the
solution to the problem without the restriction on the trade unit. ]

The proof of Theorem 1 relies on the following lemma.

Lemma 6 Consider the following mazimization problem parametrized by p €
McR:
| max f(z; p)
where 8—2%&—?“1 <0 and 8—23%(};&1 < 0 for all z, for all p.
Suppose that the problem has interior solution for all p € M. For two parameter

values yy and p, such that py > po, the optimal solutions z} and z} satisfy :
1.zt <z},

2. for some real numbers a and b, such thata <z} <z; < b

fztim) = flaim) _ f(z5p2) = f(a; p2)
f(iim) = fbp) = f(23 pa) — f(b; pa),




3. if, given a and b, there is a ji for which f(a; i) = f(b; it), then
for all p > fi, the optimal solutions for u and i, satisfy z* < & and f(a;p) >
f(b;p),
for all u < fi, the optimal solutions for p and i, satisfy z* > & and f(a; p) <

f(b; ).

4. Given a different objective function g(z;p) such that J—’i‘l > Lalzin) a for

all z, for all u, jiy < ji, where i is defined above.

Proof: Because the ﬁist order condition for the maximization problem must
be satisfied for all g,

Pf(zim),  Ff(zip)
ooz Pt o =0

Therefore ‘ﬂ—“:‘: < 0 and for y; > pa, 2 < zj which is the first claim.

Notice that for u; > p,, 8f (3";“1) < ¥ (a”;“’) because the cross derivative is

assumed negative. For a and b such that a < z* < b,

fla;p) = f(z";p) — /:.gf—(a:gﬂdz

and

F(bim) = f(x,#)+/ 1% 1) g,

It follows that :

f(z1:81)—=f(a;pn } _ * Of(z;m1) _ b 0f(z;m1)

~f(‘”;§lli)—f(b;#:) o f:: s o= “dz/( Jz; s 0z “dz)
f”z de/(_ fi’; —ﬁg—;ﬁﬁdx)

2)—

f(-'”z,l“l) f(b»p't’)

IA

and the second claim follows.
To prove the third claim, notice that for a 2 such that f(a; i) = f(b; i), if p > £,

then
f(#; ) — fla; ) —1> f(z* p) — fla; 1)
f(&; ) ~ £(b ) f(z*u) = f(b p),




and thus f(a;u) > f(b; u). The reverse case for 4 < ji can be proved the same
way. Finally the last claim follows because at iy, 9(a; fiy) < g(b; fis) and the proof
is complete. ]

Proof of Theorem 1: It is straightforward but tedious to show that the
objective function in the agent’s maximization problem satisfies the condition on
its cross derivative as in Lemma 6 for the relevant domain. We omit its proof.

Denote the optimal investment amount when the true state is known as G

with certainty as Z. Then p = vg and thus

w

T=-—

2‘DG

from Lemma 1 and the assumption that W is an integer multiple of 2vgd.

Using Lemma 6, we can show that there is u“® close to 1 such that the agent
with the signal Hor M is indifferent between 2, = % and z, = E%VZ + d so that
for all u > pCB the market cannot distinguish between traders with two different
si‘gnals and the proof of the first claim in the first part of the theorem is complete.

For the same reason we can show that there is u™ such that for all g > uM,
z = zn(p; H) = zo(p; L)

Setting uT as the belief such that for all g > uT, 7 = 2z,(u; H) = z,.(u; R),
completes the proof of the first part of the theorem.

The second part of the theorem follows from Lemma 2. In particular, N°B, NM,
and N7 can be computed using the updating equation given in Lemma 2. For
instance, given u® and u®B, N5 is the smallest integer satisfying the iflequality,

v CB>
T a1y

and the proof is complete. [
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Figure 3.3: Sample Path of Signal and Price: Case 3
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Chapter 4

Equilibrium Borrowing and
Lending with Bankruptcy



4.1 Introduction

Many economic models assume tha.1? an individual may borrow to smooth out the
consumption path over time as far as it does not exceed one’s total resources.
| Considering the pervasive presence of borrowing constraints in reality, however,
the frictionless borrowing is obviously an extreme idealization. On the other hand,
the literature on the borrowing problem usually seeks to explain the presence
of borrowing constraints with asymmetric information or the unavailability of
repayment enforcing mechanisms.! The present paper attempts to analyze the
problem of borrowing and lending from a different perspective; in the long-term
relationship with a borrower, a lender has a time inconsistency problem because
the lender cannot make a binding commitment with respect to the credit limits.
We explain the presence of borrowing constraints as a consequence of the time

inconsistency problem of the lender.

Time incbnsistency arises in the. following way. Consider a borrower with un-
certain future income. Specifically the borrower has no income initially but he
may become rich making a constant income at an unknown time in the future. At
the beginning of the relationship with the borrower, the lender may set a credit
limit which maximizes his expected return if the borrower consumes subject to
the given credit limit. If the borrower is unable to repay until after his borrowing
hits the given credit limit, however, it may be renewed to a bigger one; otherwise
the borrower has to go bankrupt immediately and the lender gets nothing back
from his lending. Taking account of the anticipated increase in the credit limit,
the borrower consumes more at each moment of time than he would subject to

the outstanding credit limit. A higher consumption path shortens the time dur-

1See Bulow and Rogoff(1989a), Gale and Hellwig(1985), Green(1987), and Stiglitz and
Weiss(1981), for such attempts.



ing which the given credit limit is exhausted and lowers the probability of the
borrower’s being able to repay while consuming the given credit. Consequently,
the lender’s expected return from the loan may become negative. Notice that
the lender has the incentive to renew the outstanding credit limit at the time the

borrowing reaches it even if the borrower has consumed subject to the additional

credit himit.

From thev explanatién, it is imnlxedia.te that the uncontrollability of the con-
sumption path by the lender is a necessary element of the problem. Indeed, if
the lender can control the borrower’s consumption path, he can always guarantee
himself a positive expgcted return by forcing the borrower to consume subject to
the outstanding credit limit.

We anaiyze the problem in a game setting which is constructed using the
model developed by Hellwig(1977). It is a partial equilibrium model where the
interest rate is fixed at the market rate. It assumes symmetric information and
the availability of a enforcement mechanism so that the borrower cannot default
with enough money to repay the debt. The model is reformulated as a two-person
game? where given a fixed interest rate, the lender maximizes the expected return
from the loan to the borrower by' setting a sequence of credit limits and the
borrower maximizes the expected utility of consumption from borrowing with
rational expectations as to the future evolution of credit limits.

The paper presents two major results. First, we provide a characterization of a
class of the subgame pérfect equilibria when they exist. The class of the subgame
perfect equilibrium we characterize uses only pure strategies along the equilibrium
path but most of them use mixed strategies off the equilibrium path.

To characterize the subgame perfect equilibrium, the “credible credit limit” is

2For an early game-theoretic approach to the time inconsistency problem, see Peleg and
Yaari(1973).



defined as the debt level beyond which there is no loan with a positive expected
return to the lender so that the lender stops lending regardless of the past history.
We can identify two kindé of equilibria characterizations depending on whether
the lender has a positive expected return when he initially sets the credit limit at
the credible credit limit. In the first case where the expected return is positive,
the lender always renews the credit limit up to the credible credit limit. The
borrower ignores any credit limit less than the credible credit limit and consumes
subject to the credible credit limit. In the second case where it is negative, the
lender stops lending at a debt level less than the credible credit limit including
the zero debt. The latter case implies that a type of credit rationing exists due to
the time inconsistency problem of the lender.

The other result of the paper concerns the non-uniqueness of the equilibrium
outcomes. In the second case of the equilibrium characterization, there is a con-
tinuum of equilibrium outcomes. The multiplicity of the equilibrium outcomes
implies difﬁculti& in predicting the equilibrium play of the lender and the bor-
rower.

Our result can explain interesting situations including the sovereign debt prob-
lem. If it is postulated that the borrowing countries try to exploit the time incon-
sistent nature of the international banks, the frequent rescheduling of the sovereign
debt services may be explained as equilibrium phenomena where the renewal of
the credit limit occurs due to the changing incentive of the latter.

Before the formal analysis of the model, we briefly review the literature on
the borrowing problem. Hellwig(1977) raised the issue of the time inconsistency
of the lender from a different perspective. His paper was concerned with the
non-existence of time consistent courses of action. In contrast to his paper we

focus on the characterization of time consistent courses of action when they exist.



Moreover his result cannot be regarded as a theoretical justification of the presence
of borrowing constraints because it .predicts no existence of equilibrium.

Gale and Hellwig(1985) applied the game-theoretic reasoning to a one-period
debt problem. They showed that the standard debt contract in reality emerges as
the incentive-compatible debt contract. Their problem arises due to the informa-
tional asymmetry rather than the long-term relationship between the lender and
the borrower. Hart and Méore(1989) analyzed the debt problem in a dynamic set-
ting withv renegotiation. The model assumes that enforcing repayment of debt is
costly because the collateral is more valuable to the borrower than to the lender.
Bulow and Rogoff(1989a) analyzed the sovereign debt problem focusing on the
reputation effect of the borrower in the international capital market where the
lender does not have enforcement mechanisms. These three models depart from
the present one in that costly enforcement of repayment is the driving force of the
problem. |

Bulow and Rogoff(1989b) also studied the bargaining problem in rescheduling
the sovereign debt services. Their bargaining equilibrium has a “one-time” nature
so that it does not capture the implication of the long-term relationship between
the borrower and the lender.

Chari a,ﬁd Kehoe(1989a,b) discussed the time inconsistency problem associated
with the government debt in a different context from ours. The time inconsistency
in the model arises because de facto it is efficient for the government to default.

Stiglitz and Weiss(1981) attempted to explain the credit rationing with asym-
metric information as to the characteristics of the borrower. Their result differs
from ours in that a borrower is either granted a loan or rejected totally.

To date, most of the literature has tried to explain the presence of borrowing

constraints by postulating asymmetric information or the lack of enforcement



mechanisms. In contrast, this paper explains borrowing'constraints by the time
inconsistency in the long-term relationship between the lender and the borrower
and the uncontrollability of the borrower’s consumption path. '

The rest of the paper is organized as follows. In the next section we introduce
our formal model with notations. In section 3 the model is formulated as a game.
Section 4 contains the characterization and the non-uniqueness of the subgame

- perfect equilibrium when it exists. Section 5 concludes with comments on the

possible directions of future research.

4.2 The Model

Consider a risk averse borrower who has no income or wealth currently but may
become rich in the future. The borrower’s objective is to maximize the expected
utility by borrowing against his uncertain future income. The borrower discounts
the future consumption at the constant discount rate §. The borrower’s utility
function u(c) is continuously differentiable, strictly increasing, strictly concave,
and bounded above and below. The utility function has unbounded marginal
utility at zero consumption, that is; lim.ou'(c) = oo.

The borrower’s income is the only source of uncertainty in the model. The
stochastic process of income, y(t), is described as follows. At t = 0, the borrower
has no income: y(0) = 0. Once the borrower becomes rich, he earns constant
income, a, at each moment of time from then on, that is, for all ¢,t’, with ¢/ > ¢,
Prob{y(t') = a | y(t) = a} = 1. If the borrower is poor at ¢, he becomes rich
according to the Poisson arrival process with parameter A, that is, for all ¢,#', with
t' > t, Prob{y(t) = a|y(t) =0} = 1 — e -1,

When the borrower becomes rich, he converts his risky debt into a riskless

security because with certainty, his income is sufficient to pay the interest on the



debt. The interest rate on the riskless debt is r. Hence after becoming rich, the
borrower consumes the remainder of the income after the interest payment and
the lender’s return from the rich borrower is the discounted sum of riskless interest
stream accrued to the debt outstanding at the moment the borrower becomes rich.

The borrower’s income is a common knowledge and there is an institution
which forces the rich borrower to pay the interest on his debt. Therefore the rich
borrower may not go bankrupt consuming his whole income without paying the
interest.

While poor, the borrower may borrow up to the credit limit, A, set by a risk
neutral lendér.3 The debt, k(t), accrues interest at an exogenously given risky

| interest rate, R, which is larger than r because of the positive probability of the
bankruptcy. Once the debt hits the given credit limit, the lender decides whether
to renew the credit limit to a bigger one. If the lender decides to renew the credit
limit, the borrower may continue to borrow and consume as before.

If the lender decides not to renew, the borrower is forced into bankruptcy. The
borrower also goes bankrupt if the interest exceeds the income even when he is
rich. In addition, the borrower may choose to go bankrupt when he is poor. Once
bankrupt, the borrower consumes nothing until he becomes rich so that he cannot
smooth his consumption path by borrowing against his uncertain future income.

In addition, the borrower gets a bankruptcy penalty when he goes bankrupt.
The bankruptcy penalty, p(k), depénds on the amount of the debt outstanding
at the moment the bankruptcy occurs. The bankruptcy penalty is assumed to be
more than enough to wipe out the gain from going bankrupt, that is, the expected

utility of becoming rich with zero debt in the unknown future. On the other hand,

3The credit limit can be renewed over time so that it is a function of time. For notational
convenience, however, the formal notation is written as if the lender is committed to one credit
limit because at the equilibrium only one credit limit matters to both agents.



the lender gets nothing back from the bankrupt borrower.

Taking account of the penalty, we write the value of bankruptcy to the bor-

rower, B(k), as follows:*

u(0) + AV(0) — p(k)
S+ A )

B(k) =

The first two terms in the numerator represent the expected utility of zero con-
sumption until bécoming rich and the expected utility of becoming rich with zero
debt in the Iunknown future, respectively.

| Because the penalty is enough to wipe out the gains from the bankruptcy, p(k)
satisfies

p(k) > A(V(0) - V(¥))

where V (k) is the utility of becoming rich with the debt of k. In addition, it is
assumed that the value of bankruptcy is less sensitive to the amount of debt than
the utilit-y of becoming rich with the same amount of debt, that is, B'(k) < V'(k).5

We write the borrower’s problem formally as:

max E ooo e %tu(c(t))dt (4.1)

k() = R(k(t)) + y(t) — c(t),
s.t.{ k(t) > —A, k(0) =0,
c(t) 20

where the expectation in the objective function is taken with respect to the

stochastic income, y(t).°

Notice that the solution to the problem comprises two different consumption

paths, one before becoming rich and the other after becoming rich. After becoming

4To derive B(k), set u(c(t)) = u(0) and V(k(t)) = V(0) in the borrower’s optimization
problem (3) to be explained later.

5This technical assumption is not directly used in the analysis. We make the assumption to
use Hellwig’s result on the borrower’s optimal choice.

6There is an abuse of notation in denoting the interest accrued on the debt as R(k(t)) because
after becoming rich the interest rate is the riskless rate r.



rich, the borrower solves a maximization problem under certainty. If the borrower

becomes rich with initial debt ko at time 0 given a credit limit of A, the borrower’

problem is:

Vi(ko) = max [ e~*u(e(t))dt (4.2)

e(t) Jo

{ k(t) = rk(t) + a — c(t),
s.t.{ k(t) > —A, k(0) = ko,
c(t) 2 0.

Notice that the interest on the outstanding debt is accrued at the riskless rate
because the borrower is riich. The value function V(ko) is the indirect utility of
becoming rich with the debt of k.

. Using the value function of the maximization problem after becoming rich, the

borrower’s problem is rewritten as follows:

V(0,4) = max /OT e+ [y(c(t)) + AV (k(2))]dt + e C+ITB(K(T))  (4.3)

k(t) > —A, k(0) =0,
c(t)20

where T is the time of bankruptcy.

{ k(t) = Rk(t) — ¢(t),
s.t.

The two terms inside the integral represent the utility from the current con-
sumption and the expected utility of becoming rich with debt, respectively. It
implies that befqre_bécoﬁing rich, the borrower maximizes the expected utility
taking account of the impact of the current consumption on the utility of becom-

ing rich with debt. Hence the value of integral is the expected utility before going

bankrupt. In addition, the borrower takes account of the value of bankruptcy
represented by the last term in equation (4.3).

The time of bankruptcy, T, is a decision variable of the borrower. Because

the debt grows at the risky interest rate, the poor borrower cannot delay the



bankruptcy forever. The borrower plans to go bankrupt at the point of time
when the cost of deléying the bankruptcy dominates the gain from it. When
the borrower chooses the consumption path, he decides the time to go bankrupt
also. If the borrower does not become rich before that time, he goes bankrupt as
planned.

We define the value function V(ko, A) to be the borrower’s incremental indirect
utility when he consumes subject to the credit limit A given the initial debt of
ko. In a departure fi‘om standard terminology, we sometimes call V(ko, A) the

borrower’s problem in the same situation.

Next we formulate the lender’s problem. At each point of time, A\(—k(t)) is the
expected amount of debt that becomes a safe asset if the borrower becomes rich. In
addition the lender has to provide a consumption loan if the borrower is not rich.
To get the_instantaneoué éxpected return at time ¢, we subtract the amount of
the consumption loan from the expected amount of debt that becomes safe asset.
The lender has access to an unlimited amount of fund at a riskless interest rate,
r, so that his cost of lending is assessed at the riskless interest rate. Equivalently

he discounts the future return at the riskless interest rate. The lender’s problem

1s written as:

P(0, A) = max /0 T e~ k(1)) — oft)]dt (4.4)

where k(t),c(t) , and T are solutions of V(0, A) and thus functions of A.

The first term of the integrand represents the expected amount of debt that
becomes a safe asset if the borrower becomes rich at time ¢. The second term is
the consumption loan net of the interest at time ¢ if he is not rich. The variables

in the lender’s objective function are implicitly functions of the credit limit A and



thus the lender’s objective function is maximized with respect to the credit limit,
A.

Analogously to the borrower’s case, P(ko, A) is defined to be the lender’s
incremental expected return when he sets the credit limit A to the borrower with
the initial debt of ko, or the lender’s problem in the same situation.

The Poisson process 6f the stochastic income is stationary and independent of
the borrowér’s action choice. It implies that the credit limit may not be set con-
ti.ngent on the borrower’s past consumption choice which, for convenience, is as-
sumed observable. The borrower’s action affects only the consumption path. The
lender’s incentive to renew the outstanding credit limit depends on the amount
of outstanding debt, but not the past consumption path because the past con-
sumption path does not affect the future prospect of becoming rich. In particular,
assuming that the lender cannot make a commitment with respect to the credit
limits, a credit limit previously set may be renewed voluntarily by the lender when
the debt reaches the credit limit. Consequently a contract contingent on the past
consumption path is not viable. In contrast, if it is assumed that the borrower may
affect the future income prbspect by past action choice, a loan contract contingent
on the borrower’s past action choice becomes viable.”

It is assumed that the lender renews the credit limit to a bigger one only
when the debt hits the outstanding credit limit. It implies that the lender cannot
directly control the borrower’s consumption path; once setting a credit limit, the
lender moves only when the credit limit is exhausted.

The credit limit set by the lender is assumed not to exceed the discounted sum
of the rich bdrrower’s income, Amx.= a/r : A < Amax. Implicit in the assumption

is that the lender is not allowed to forgive a part of the debt. If the debt grows

7See Stiglitz and Weiss(1981) for this possibility.



bigger than Amax, even the rich borrower cannot pay the interest. Because the
borrower goes bankrupt if he cannot pay the interest out of his income, the lender
should forgive a part of the debt to avoid the bankruptcy of the rich borrower.

Hence the assumption is equivalent to the no forgiveness of debt.?

4.3 The Game, I'

Next we formulate the model as a two person game, I, in the agent normal form
where the players are the lender and borrower at different points of time; the first
lender moves at the bégimiing of the game and the second lender moves when the
loan reaches the first credit limit and so on, and similarly for the borrower.

" We define the strategies of the players. The lender’s strategy, {A.}2,, and
the borrower’s strategy, {cn(t)}%,, are a sequence of credit limits and a sequence
of consumption paths, respectively. We consider only pure strategies along the
equilibrium path. The players’ strategies satisfy the Markov property along the
equilibrium path: the lender’s strategy depends on the amount of the debt out-
standing at the moment of the credit limit renewal and the borrower’s strategy
depends on the amount of outstanding debt and the current credit limit. In
particular, they do not depend on the whole past history of credit limits and
consumption paths.

It is easy to see that .the borrower’s strategy does not depend on the past
history because the borrower’s problem V(ko,A) is defined given only the out-
standing debt and the credit limit constraint. On the other hand, the lender’s
strategy depends only on the outstanding debt for the following reason. The
previous credit limits may have affected at most the borrower’s past consump-

tion paths. But the borrower’s past consumption paths do not affect the lender’s

8Without the assumption, there may not be a subgame perfect equilibrium in the subgame
after the debt reaches Amax.



strategy choice because by the Poisson process of the stochastic income, the past
consumption paths do nét affect the prospect of future income. It follows that
the lender’s strategy depend on neither the previous history of credit limits nor
the consumption paths.

The significance of the Markov property of the players’ strategies lies in that
a loan contract contingent on the past consumption choice is not viable. In par-
ticular, the lender’s strategy is written as an increasing sequence which does not
depend on the previous history.

The borrower’s strategy is a sequence of continuous functions on time intervals
because given the assumption on the borrower’s utility function the solution to
the problem V(ko, A) is a continuous function over time.

Let A = (A, As,...) denote the sequence of credit limits renewed at t =
To, T1, . . ., and c(t) = (cl(t),cg(t), ...) denote the sequence of consumption paths
from Ty to .Tl, T, to T3, and so on. The credit renewal times when the debt
level reaches the outstanding credit limit, T,,n = 1,2,..., are the borrower’s
decision variables. We are sloppy about this because they are also known, once the
consumption decision is made. We denote the time the borrower begins borrowing
by To and thus Ty = 0. The creditor’s strategy space is the set of increasing
sequences with supremum less than or equal t0 Amax. The borrower’s strategy
space is the set of piecewise continuous functions on [0, oo].

In contrast to the case of strategies along the equilibrium path, we allow mixed
strategies off the equilibrium path. The mixed strategies off the equilibrium path
do not satisfy the Markov property; it depends on the previous credit limit the
lender deviated to.. The lender’s deviation occurs when the lender renews to a
credit limit.' which is not prescribed by the equilibrium strategy. To make the

lender worse off after deviation, enough probability of loss should be warranted.



Because the expected return of the lender depends on the outstanding debt which
is the previous credit limit renewed to by the deviation, the probability to make
the lender worse off depends on the history of the credit limits. However, notice
that the use of mixed strategy is never observed in the equilibrium play because
it is used only off the équilibrium path.
Next we define the payoff functions of the players. The payoff functions have
a recursive structure because the payoff at a certain moment of time is the sum of
the payoffs from the contemporary play and from the future play. In the definition,

we use the notation, A_p = (Ans1, Ant2,.--), and c_a(t) = (ens1(t), Cnga(2),- - -)-

Definition 1 The lender’s payoff function, {Pn}x,, and the borrower’s payoff

function, {V,}3¥,, are defined recursively by

Pu(An, Anic(t)) = /T" e~ FE (A (=k(t)) — ca(t))dt

n-1

e NT-To)P (Anys, A_man)ic(t))  (45)

and

VaAsen(then(®) = [ I ulealt) + AT(R(E)))d

n—1

4o~ N Tn=Ta-D) Y (A5 Casa(t), conan)(t))  (4.6)

{ k(t) = Rk(t) — ca(),
sit.d k(t) > —An, K(Tao1) = —An-1,

cn(t) 2 0,
where k(0) = Ao =0, and

Pi(Ai, A_;;c(t)) =0 for all 2 2 n,
if An_1 = Ap, then Va(A4;¢n(t), c-n(t)) = B(—A,),
{ Vi(A; cit),c-i(t)) = 0 for all i 2 n + 1.



In the definition above, the present payoffs, P,(+;+) and Vy(+;-), depend on the
future play via the future payoffs, Po11(+;+) and Vaya (), but not vice versa. This
payoff structure at different moments of time points out the source of the time
inconsistency problem. .

In the analysis we use the subgame perfect equilibrium as our equilibrium
concept. We first define the Nash equilibrium and then the subgame perfect
equilibrium by requiring that the equilibrium strategy is a Nash equilibrium in
all subgames. In the definition of the subgame perfect equilibrium, we denote the
subgames starting from the n'* lender and the n'* borrower after the history Ap—1
and A, by .I‘LIA,,_I and T'|A,, respectively. The strategy profiles A|A,_1 and
c(t)lA,. are the projections of A and c(t) on I';|An_, and It | A,, respectively.

Definition 2 ({42}, {c1}2,) is a Nash Equilibrium if and only if

1. Pa(A5, Aimc (t)) > Pu(As, ALyi € (1)) (4.7)
for all A, for all n,
2. Vo(A% 64 (1),€a(2)) 2 Val(A'; ea(t),c2a(t)) (4.8)
for all c,.(t) foralln. |

Deﬁmtlon 3 ({A ) {e),) ise Subgame Perfect Equilibrium if and only if

1. for every possible history An_1, (A*|Ap-1,c"(t)]|Ay) is a Nash equilibrium
for all T} |Ancy, n=1,2,...,
2. for every possible history An, (A*|An, c*(t)|Ay) is @ Nash equiiibrium for all
ItlA., n=12,....



The deﬁmtlon of subgame perfect equilibrium requires that the equilibrium
strategy remains so in every subgame even after a history not prescribed by the

equilibrium strategy.
4.4 Subgame Perfect Equilibrium

4.4.1 Characterization

The characterization of the subgame perfect equilibrium in T’ crucially depends on
the credit limit beyond which there is no additional loan with positive expected
return to the lender. Obviously the lender can precommit not to grant any loan in

excess of this credit limit. We define this credit limit as the credible credit limit.®

Definition 4 The crédib_lé credit limit, A, is the smallest real number satisfying,

ZzAmax')

or

P(-A,A) <0, forall A€ (A, Amax)-

By definition, for all A < A, there always exits an additional credit limit
A’ € (A, A] with pos1t1ve expected return and A is unique.

On the other hand, there may not exist any A < A such that P(—A, A) >0,
that is, for any A < A, there exists A’ € (4, A) such that P(—A, A’) > 0 but
P(—A,A) < 0. If this holds true for the credible credit limit, then there is no
subgame perfect equilibrium; the lender should renew if the additional credit
limit is not to be renewed but the additional credit limit has the same property

so that the lender cannot stop until the expected return becomes negative at A.

" 90ur definition of the credible credit limit corresponds to that of the “naive cut-off point”,
AY | in Hellwig’s model.



Hellwig gives an example to show the non-existence of time consistent courses
of action in the case above. Although Hellwig doesn’t prove the non-existence of
the subgame perfect equilibrium for his example, his non-existence result carries
over to the game setting as alluded to above.1® To avoid the non-existence of the
subgame perfect .eQuilibrium, we assume that the credible credit limit is locally

profitable in the following sense.

Definition 5 The credible credit limit is locally profitable if there exists ko €

(—A,0], such that
P(ko, A) 2 0

The next lemma summarizes a few of Hellwig’s results on the borrower’s op-
timal consumption behavior to be used in our analysis. The numbers in the

parentheses denote the proposition numbers used in Hellwig(1977).

Lemma 1 (a)If r < 6 + A, then the borrower wants to borrow for all kg < 0.
(Prop.2(c))

(b)For all ko, w(c(t)) > V'(k(t)). (Prop.4(1)(c))

(c) The borrower chooses to go bankrupt only after ezhausting the given credit

limit. (Prop.4(2)(a))

We assume that r < & + A so that the borrower wants to borrow. Lemma 1(b)
implies that given the same amount of debt, the consumption before becoming
rich is smaller than after becoming rich. By Lemma 1(c), bankruptcy occurs only
if the lender refuses to renew the credit limit or the debt grows to Amax in which

case the income of the rich borrower is not enough to pay the interest.

10The non-existence of the subgame perfect equilibrium in the example is due to the continuity
of the strategy space; the existence of the subgame perfect equilibrium is guaranteed only in a
finite game.



The characterization of the subgame perfect equilibrium uses the backward
induction starting from the credible credit limit. The lender’s strategy given a
certain amount of debt depends on whether a loan up to the credible credit limit
yields a positive expected return and thus P(ko,A) as a function of ko plays
an important role. We now proceed to a few preliminary results concerning the
regularity of the lender’s expected return P(ko, A) as a function of ko : the lender’s
expected return P(ko, A) is continuous in ko and it crosses zero downward at most

once. All proofs are relegated to the appendix.
Lemma 2 Given A > 0, P(ko, A) is continuous in ko € [—A,0].

Lemma 3 If 25 > 224 for c(t) such that —\k(t) — c(t) = 0, then P(ko, A)

is decreasing in ko when P(ko, A) < 0.

The condition of Lemma 3 guarantees that the consumption does not increase
too fast relative to the debt. It requires that the relative risk aversion is greater
than a certain number which depends on the parameters of the problem. The
number would be fairly small in most cases so that most of well-behaved utility
functions satisfy the condition. In the following, we assume that the condition of
Lemma 3 holds.

The lender’s éxpected return from the loan up to the credible credit limit is
either positive or strictly negative. As will be shown later, we can draw P(ko, A)
a,é a function of ko as in Figure 1 and Figure 2 depending on whether P(0, A) is
positive or negative.

The following example shows how the lender’s expected return varies with the

parameter values of the problem, r, R, \.

Example:



Suppose that.the borrower has a quadratic utility function, u(c(t)) = c(t) —
1(c(t))?, and discounts future utility at a discounting factor equal to the riskless
interest rate r. This violates our assumption on the utility function because the
quadratic utility function has bounded marginal utility at zero consumption. This
feature, however, helps to locate the credible credit limit easily. The borrower
earns 1 unit of income instantaneously after becoming rich, that is, a = 1. We
assume that the value of going bankrupt is identically 0, that is, B(k) = 0 for all
k<O0.

The borrower’s problem is written as:

max [ " e+ [e(t) - L)) + AV ()t (4.9)

| { k(t) = RE(t) — c(t),
s.t.{ k(t)> —A, k(0)=0,
c(t) >0

" Once the credible credit limit is given, we can solve for the borrower’s con-
sumption path together with the time of bankruptcy, 7. Notice that the maximum
credit limit is 1. If the maximum credit limit is locally profitable, it is the credi-
ble credit limit. Hence it is necessary to check that the maximum credit limit is
locally profitable which holds true for all parameter values in the example.

After solving for the consumptioﬁ path, we can compute the creditor’s expected
return from lending up to the credible credit limit. We fix the riskless rate at .003
and compute the expected return for various combinations of the parameter values
of R and ). The riskless rate of .003 is approximately the monthly interest rate
when the yearly rate is 3.6%. It should be noted, however, that only the relative
magnitude Aof the riskless rate in comparison with other parameters, R and ), is
important.

Table 4.1 shows the lender’s expected return for various parameter values. It

is checked that for all the parameter values, the maximum credit limit is locally



P(0,7) [ 3 (expected time to be rich)
r=3.6% 12 yrs 10 yrs 8 yrs
4.8% -6.414 -2.107 -.043
R | 6.6% -4.318 202 2.373
8.4% -2.790 1.909 4.223

Table 4.1: Lender’s Expected Return

profitable so that it is the credible credit limit. In the table, the higher R and A, the
bigger the expected return. The cases with positive expected return correspond
to Figure 1 and the ones with negative expected return to Figure 2, respectively.

On the other haﬁd, there exists a A sufficiently low for which raising R does
not make P(0, A) positive. As will be shown later, there is a credit rationing if
" P(0,A) < 0. Hence for ) sufficiently low, the credit rationing may not disappear

even if the lender raises the risky interest rate R.

We first characterize the subgame perfect equilibrium for the case P (0,4) > 0.

Lemma 4 shows that P(ko,Z) as drawn in Figure 1 holds true in this case.

Lemma 4 Given any A > 0, if P(0,A) > 0, then P(ko,A) > 0, for all ky €
[—A,0].

Lemma 4 implies that if P(0,A) > 0, the expected return to the lender is
positive throughout even if the borrower consumes subject to the credible credit

limit. Therefore the lender always extends the loan up to the credible credit limit.

Proposition 1 If P(0,A) > 0, (A*;c*(t)) is the subgame perfect equilibrium in

pure strategy, if A* = (A}, A},...) is any increasing sequence such that

sup{4;} = 4,



and strictly increasing up to A, and c*(t) = (c}(t),c3(t),...) is the solution to the

problem V (0, A) satisfying

T :
/ e'R'c,,(t)dt = BIn-Ta1) g _ A _,.
Tn—l
Moreover, all the subgame perfect equilibria support a unique outcome.

In Proposition 1, the subgame perfect equilibrium results in a unique equilib-
rium outcome if the lendér. has a positive expected return from the credible credit
limif. The only credit limit taken into account by the borrower is the credible
credit limit. Therefore the lender cannot affect the consumption path by setting
a,ny' sequence of credit limits and the optimal consumption path is uniquely de-
termined. In this case the lender’s advantage as the “first mover” in setting the
credit limit totally disappears because of his changing incentive.

In the equilibrium, there is no less borrowing than in the case where the
lender can directly control the coﬁsumption path. It follows that the lender’s
time inconsistency problem does not introduce welfare distortion but affects only
the distribution of the payoffs between the players.

Although the equilibrium outcome of the game is unique in this case, there is
a continuum of equilibrium strategies by the lender in the following sense: The
lender can set any temporary credit limit less than the credible credit limit even-
tually renewed to the credible credit limit and this doesn’t affect the equilibrium
play of the borrower.

An additional result is presented without proof because it follows immediately

from Proposition 1.

Corollary 1 Given any outstanding debt, —A < ko < 0, if P(ko, A) > 0, (A*; c*(t))

is the subgame perfect equilibrium in pure strategy of the game starting with the



initial debt ko, if A* = (A}, A},...) is any increasing sequence such that
sup{A4;} = 4,

and strictly increasing up to A, and c*(t) = (c}(t),c3(t),...) is the solution to the

problem V (ko, A) satisfying
Tn
/ e R, (t)dt.= e RIn-Ta-1) 4 _ A, ;.

Moreover, all the subgame perfect equilibria support a unique outcome.

Next we consider the case in which the lender stops lending before the credible
credit limit because the .c'redible credit limit does not yield a positive expected
return to the lender. Because the lender should stop lending before the credi-
ble credit limit, we need an alternative point where we can start the backward
induction. Such an alternative stopping point is derived in the following way.

In Figure 2, P(ko, A) crosses zero downward only once. At the debt level where
P(ko, A) = 0, the lender has zero expected return from lending up to the credible
credit limit. Therefore the lender is indifferent between the renewal of the credit
limit and its refusal. In particular, the lender can stop lending at such a debt
level so that the debt level plays the role of the credible credit limit.

Lemma 5 and Lemma 6 together with Definition 6 show the existence of such

an alternative credible credit limit.

Lemma 5 If P(0,A) < 0, and P(ko, A) increasing at kg = — A, there ezists a
unique k € (—A,0) such that P(k, A) = 0.

Lemma 5 shows that P(ko, A) as in Figure 2 hold true when P(0,4) < 0.
However, the lender may still have negative expected return from the loan up to k

in Lemma 5 so that he should stop lending before k. Lemma 6 shows that there is



an alternative credible credit limit with the same property as k in Lemma 5 which
yields the lender a positive expected return. This credit limit is computed using
the sequence defined in Déﬁnition 6: the sequence A; represents the debt levels at

which the lender is indifferent between the renewal and the refusal of additional

loan.

Definition 6 Define Ao = A, and recursively A; € [0, A;_;) by P(—A;, Ai-1) =0

fori=1,2,....

Lemma 6 If P(0,A) < 0, there ezists a finite integer, i > 1, such that P(0, 4;) >

0.

The result of Lemma 6 can be visualized as in Figure 3. The sequence A;
in Figure 3 represents the debt level at which the lender is indifferent between
the renewal and the refusal of additional loan. In the proof of Proposition 2 and

Proposition 3, we use th'e. fact that once the debt level hits —A;, the lender is
indiffereﬁt Between the refusal and renewal of the loan up to —A;_; so that he
can stop lending or use mixed strategy. Proposition 2 characterizes the subgame
perfect equilibrium where the lender stops lending when he is indifferent between

the renewal and the refusal of a loan while Proposition 3 takes the case of mixed

strategy.

Proposition 2 If P(0,A) < 0, there ezists a subgame perfect equilibrium with
positive borrowing less than the credible credit limit in which the lender always

refuses to grant a loan with zero expected return.

Proposition 2 uses A; in Figure 3 as the alternative credible credit limit at
which the lender can stop lending. Hence the proof proceeds very much like in

Proposition 1 with A; replacing A. Also the characterization is similar in that the



equilibrium strategy. satisfies the Markov property and uses no mixed strategy
off the equilibrium path as well as along the equilibrium path; it yields the only
equilibrium outcome supported by subgame perfect equilibrium in pure strategy
everywhere under the condition that P(0,A) <0.

The subgame perfect equilibrium in Proposition 2 implies the presence of
credit rationing because the equilibrium borrowing is less than the credible credit
limit. The credit rationing in Proposition 2 is different from that in Stiglitz and
Weiss(19815 where the borrower is either granted the total amount of the loan
which he wants or rejected totally.

On the other hand, it seems intuitively appealing that the lender may not grant
any loan initially in the case P(0, A) < 0 for the following reason. If the borrower
is not sure that the lender stops lending when the lender is indifferent between
the renewal and the refusal of a lqa.n with zero expected return, the borrower may
consume subject to the éredible credit limit leaving the lender a negative expected

return. Indeed the intuition is proved to be true in the next proposition.

Proposition 3 If P(0, A) < 0, there exists a subgame perfect equilibrium with no
positive borrowing in which off the equilibrium path the lender randomizes between

the renewal and refusal of a loan with zero ezpecied return.

In the proof of Proposition 3 we need a punishment after a deviation of the
lender; although no borrowing and lending is obviously a Nash equilibrium, with-
out a punishment scheme the deviation by the lender may make the lender better
off so that it is not a subgame perfect equilibrium. The punishment of the lender
after a deviation requires enough probability of loss to the lender by using the
mixed strategy. The mixed strategy is necessary in the punishment because the

deterministic cut-off in the future may justify the current renewal of the credit



limit. Notice that the mixed strategy is used only after a deviation. Hence it is
never observed in the equilibrium play of the game.

The punishment using the mixed strategy is sketched as follows. The lender
can use A; in Figure 3 as the points at which he randomizes between the renewal
and the refusal of additional loan. In the randomization, the lender places enough
probability on the refusal so that the borrower is indifferent between consuming

-subject to the outstanding credit limit and a bigger credit limit and thus the
borrower may randomize also. If the borrower’s randomization yields a negative
expected return to the lender, the lender becomes worse off after the deviation.
To summarize, the unCertéin future evolution of the game which is likely to yield
a negative *expec.ted return prévents the lender from deviating to set a positive
credit limit.

The subgame perfect equilibrium in Proposition 3 results in a total rejection
of loan for a rather different reason from Stiglitz and Weiss(1981). It follows that
even in the absence of asymmetric information in the relationship between the

borrower and the lender, we may have no borrowing equilibrium.

4.4.2 Non-Uniqueness

Proposition 2 and Proposition 3.imply that there are multiple equilibria in the
case P(0,A) < 0. Both equilibria result in a borrowing less than the credible credit
limit. The problem of multiplicity of the equilibrium is very severe here as we can

see in the following proposition.

Proposition 4 If P(0,A) < 0, there exists a continuum of equilibria whose out-

comes all result in the borrowing less than the credible credit limit.

The continuity of equilibria arises because the equilibrium with no more bor-

rowing can be attached in the subgame after a certain amount of borrowing. To



have no more borrowing in the subgame after the equilibrium borrowing, the ex-
pected return of the lender from the loan up to the credible credit limit should be

negative. It follows that the equilibrium borrowing is less than the credible credit

limit.
4.5 Conclusion

This paper shows that borrowing constraints more severe than those assumed
in the ideal situation when consumption is regulated by wealth may result from
the equilibrium play of the game due to the time inconsistency problem. The
borrowing constraint may be regarded as a kind of credit rationing. This type
of credit rationing differs from other types usually documented; the borrower can
be granted a loan smaller than he wants rather than either given a loan he wants
or totally rejected. Moreover, our type of credit rationing may not disappear
even if the;‘e are many lenders competing for the loan. Hence it invalidates the
explanation. of the quantity constraint in the credit market based on the monopoly
pbwer of the lender.

Our result dictates that borrowing constraints may exist without the infor-
mational asymmetry or the difficulty of enforcing repayment. Considering the
practical procedure of individual loans where the bank verifies the information
provided by the borrower and courts are available as the to enforcement mech-
anism, the tWo reasons may not bé enough to explain the pervasive presence of
| borrowing constraints. Thus we can regard our model as complementary to other
theories especially when the imposition of borrowing constraints is not explainable
for other reasons.

Our model is a partialkequilibrium model in which the interest rate is exoge-

nously given. To fully analyze the problem of borrowing and lending, we need



to extend the model such that the interest rate is endogenously determined. The
obstacle to this extension lies in the computation of the lender’s return for differ-
ent interest rates. However, as we saw in the example, there exists a combination
of values for r and A which results in a borrowing less than the credible credit
limit for any interest rates R. Although we couldn’t derive a general condition,
we conjecture thq.t this hai)pens in many cases.

The intuition of the paper may be applied to the following problem. In a
game where the lender faces a sequence of group of borrowers starting to borrow
at different points of time, the use of a mixed strategy along the equilibrium
path has an interesting implication. To induce the borrowers to consume subject
to an outstanding credit limit, the lender uses the mixed strategy of rejecting a
proportion of the loan applications even if they are from the pool of applicants
with the same characteristics. Hence there results credit rationing which treats

loan applicants with the same characteristics differently.



4.6 Appendix

Proof of Lemma 2: Given A > 0, the optimal consumption path, (), is uniquely
determined by solving the problem V/(0,A), and is continuous in ¢. The debt
level, k(t) is also conf.inuous in ¢ and, moreover, strictly decreasing in ¢. Therefore
the inverse of k(t), denoted as % '(-), is continuous and decreasing in the debt
level k. Fix a debt level kg = k(7), and equivalently the time at which the debt
level reaches ky when consuming according to €(t) from 0 debt level, that is,
T = E—l(ko). Because the consumption path from any initial debt level greater
than 0 up to the.samé creﬂit limit is identical by the principle of optimality, the
lender’s expected return from setting a credit limit A at the initial debt level of

ko is written as the following:

Plko,A) = [ eCHIN(E() - a(e)ld

T rNEF RN\ (—F (1)) — &
J[r’(ko) NE-F (D[ \(~F(2)) — T(t)]dt (4.10)

where T is the time of bankruptcy for the problem V (0, A).
Obviously P(ko, A) is continuous in the lower limit of the integration, F—l( ko).

Because E-l(ko) is continuous in kg, P(ko, A) is continuous in ko. ]

Proof of Lemma 3: We denote optimal solution of the borrower’s problem
by overline over the va,riable as in the proof of Lemma 2. First notice that if the
integrand of P(ko, A), —Ak(t) — ¢(t), is increasing in ¢ everywhere, then we are
done because to the left of ¢ for which —\k(t) — () = 0, P(ko, A) is decreasing
in kg.

To get the lemma, we only need to guarantee that —Ak(t) —¢(t) is increasing at
t for which —Ak(t) —&(t) = 0, because in that case, —Ak(t) —¢(t) remains positive

: - . -1 .
once it becomes positive as ko decreases, or equivalently, 7 = k (ko) increases.



The Euler equation for the problem V'(ko, A) is written as:

2 (elt) = u(elt) elt)
= —(R—6—\u'(et)) — AV (k(t)). (4.11)

We can write the time derivative of the function —\k(t) — &(t) as follows:
HSORLD)
dt -

= —A(RK(t) — &(t)) + [(R =6 = M (2()) + AV (E(2))] (4.12)

u”(;(t))
“using k(t) = Rk(t) — c(t), and the above Euler condition (4.12).

Since for all ko, w/(€(t)) > V'(k(t))(Lemma 1(b)), we evaluate the above time
derivative at ¢ such that —\k(t) — &(t) = 0

d
i )\k(t) ()] xk(ty-ze)=0

> (R+A)e(t) + [((R— 6 — M)u'(2(2)) + Au'(€(2))]

1
”("(t))
= (R+A&(t) + ,,(_(t))(R 8)u'(2(t)). (4.13)

If the last line of equation (4.13) is greater than 0, —\k(t) — ¢(t) is increasing
at t for which —\k(t) — &(t) = 0. Therefore if

(R +A)e(t) 2 - ,,(-(t))(R 8)u'(e(t)),

or equivalently,

”(c)
u'(c) 2 R + A’

then —\k(t) — &(t) is increasing at ¢ for which —Ak(t) — ¢(t) = 0.

Therefore we have f such that —ME(t) — €(t) > 0 for all ¢t > £ and vice versa.
Because F_i(ko) is a decreasing function of ko, —Ak(t) —¢(t) is always negative as

ko increases from k(£). It follows that



T -1 -
Plko,A)= [, e rVOFTEI(E (D) - 2(0)

is decreasing for all ko > k(%), and it is decreasing when P(ko, A) < 0, a fortiori.

Proof of Lemma 4: Aiming at contradiction, suppose that there exists k €
[~A,0] such that P(ko,A) < 0. Then in the neighborhood to the right of &,
P(ko, A) is decreasing in ko by Lemma 3, and P(ko,A) < 0 for all kg > k. In

particular, P(0, A) < 0 which is a contradiction to our hypothesis. 1

Proof of Proposition 1: Given A* as in the proposition, it is obvious that
c*(t) is the best response of the borrower. Note that A* is a strictly increasing
sequence up f;o A because the game ends if A,_; = A,.

To show that A* is the best response to c*(¢), notice that if sup,{AZ} < 4,

there exists another strategy, A’, such that
- sup{A;} € (sup{4;}, 4],

and
Po(A%5¢(t)) < Po(A',5¢7(2))
for all n, with strict inequality for all n < N for some N.
This is possible because there exits an additional credit limit with positive ex-
pected return for any credit limit less than the credible credit limit. Therefore

contradiction.

Next suppose that sup, {A%} > A. Without loss of generality, assume A} = A,
and A} > A. Then

Py(A3, AL5; ¢ (1)) < Po(A2 = A, AZy;¢"(2)) = 0.



Therefore A* is not a best response. This proves that (A*,c*(t)) is a Nash equi-
librium.

To prove that (A*, c*(t)) is a subgame perfect equilibrium, consider any history
A,y att=T,_,. By Lemma 4, (A*|A,-1,c*(t)|A,) is a Nash equilibrium for all
I |An-1, n =1,2,.... It is trivial to show that after any history A, at t = T,
(A*|A,, c*(t)|An) is a Nash equilibrium for all T%|A,, n = 1,2,.... This completes
the proof that (A*, c*(t)) is a subgame perfect equilibrium in pure strategy.

The proof of the uniqueness of the equilibrium outcome is straightforward

because A is unique by definition. ]

Proof of Lemma 5: Because P(ko, A) is continuous in kg by Lemma 2 and
P(ko,A) is increasing at ko = —A, we have k € (—A,0) at which P(k, A) = 0 by
the intermediate value theorem.

The uniqueness follows because by Lemma 3, P(ko, A) remains negative for all

ko € [k, 0] once it becomes negative at k. |

Proof of Lemma 6: The sequence {A;} exists by Lemma 5 and is strictly
-decreasing by Definition 6. The difference between any two consecutive A,’s is
bounded away from zero. Denote the minimum difference by d. Then there exists
an integer N such that A—nd < 0for alln > N, i.e., the sequence {A;} eventually
reaches 0. Because there exists a credit limit which gives the lender a positive

expected return at kg = 0, we have an integer, 1 <1 < N, such that P(0, 4;) > 0.

Proof of Proposition 2: Suppose P(0, A;) > 0, followed by a subgame with
zero expected return to the lender. By Corollary 1, after a history A, > A, the
lender’s unique subgame perfect equilibrium strategy is renewing the credit limit

up to A. On the other hand, after a history A, = A;, the creditor refuses any



additional loan by hypothesis because P(—A;,A) = 0.

Consider the following strategy pair (A*, ¢*(t)):

and c*(t) solves problem V(0, 4,).

It is obvious that the given strategy pair is a Nash equilibrium. It suffices to
prescribe the Nash equilibrium after any deviation from the given strategy.

After a deviation by the lender such that A, > A,, the borrower consumes

~subject to the credible credit limit A and the lender extends the credit limit up to
A. This constitutes a Nash equilibrium in the subgames I't| A, and I}, ,|A,. But
the deviation makes the lender worse off because for A,_; < Aj, P(-An_, Z) <0
and consequently P,(A,, A% ;c*(t)) < 0. This shows that (A*, c¢*(t)) is a subgame
perfect equ_ilibriu'm for the case P(0, A))>0.

For the case where the credit limit with positive expected return is reached
after i steps, ¢ > 2, there is no loss of generality assuming that P(0, A;) > 0.
After a history A, € (A4;, A,), it is a Nash equilibrium that the lender stops only
at A; because P(—A,,A;) > 0. We can apply the same argument as above with
A, replacing the credible credit limit A. It is routine to check that (A*, c*(¢)) is a

subgame perfect equilibrium if
max{A’} = 4,

and c*(t) solves problem V(0, A,).
Finally by Lemma 6 there exists A; such that P(0,A;) > 0. Therefore there

exists a subgame: perfect equilibrium with a positive borrowing. |

Proof of Proposition 3: We construct such an equilibrium. The equilib-

rium uses mixed strategies after a deviation by the lender. We have to relax the



assumption that the stbra.tegy satisfies the Markov property because the mixed

strategy depends on the debt level at which the deviation takes place.

Step 1:

As in Proposition 2, we first suppose that P(0, A;) > 0, followed by a subgame
with zero expectéd returh to the creditor.

Consider (A*,c*(t))such that A} = 0 and the sequence A},n > 2, is a strictly
increasing sequence up to A and ¢*(t) solves problem V(0, A). Such a strategy pair
is a Nash equilibrium because given his own strategy for n > 2 and the borrower’s
strategy, the lender cannot initially deviate with positive expected return and
given the lender’s strategy the borrower’s deviation does not affect the play of the
game. |

The above strategy characterizes the equilibrium only along the equilibrium
path; For the above strategy to be a subgame perfect equilibrium, we need to
check the Nash equilibrium in any subgame after deviation. There are three types
of deviations possible, 4; > A4;, 4, = A,, and A; < A;. We analyze the play after

each type of deviation.

Case 1:

Suppose that the lender deviates to A; > A;. After the deviation c*(t) as above
is the borrower’s best response because P(—A;,A) > 0 so that by Corollary 1
max{A,} = Ais the unique Nash equilibrium in the subgame I'}|A;. The deviation
makes the lender worse off because P(0,4) < 0 and Pi(A_1,A%;;c"(t)) < 0 =

P, (A% c*(t)).

Case 2:
Consider a deviation by the lender such that A; = A,. After the deviation the

lender is indifferent between the renewal and the refusal of any additional loan



beyond it because P(—A;, A) = 0. The lender randomizes so that the borrower is

indifferent between consuming subject to A; and 4, i.e.,
xV(0,4,;) = (1 — 7)V(0, A), (4.14)

where  is the probability of refusal at A,. Given the mixed strategy of the lender,
the borrower randomizes between consuming subject to A; and A so that the

lender is not better off after the deviation, i.e.,
wP(0, ) + (1~ wP(0,3) <0, (4.15)

where y is the probability that the borrower consumes subject to A;.
Because P(0,4,) > 0 and P(0,A) < 0, we can make the lender worse off by
choosing small x. The strategy after the deviation constitutes a Nash equilibrium

in the subgame I'}|A; and the lender becomes worse off by the deviation.

Case 3:

Finally consider a deviation by the lender such that A4; < A;. We need to
characterize a Nash equilibrium in the subgame I'}|A;, and show that deviation
gives the lender smaller expected return than the equilibrium play.

Notice that if the credit limit is extended further to A,, the lender randomizes

between the renewal and the refusal so that the borrower is indifferent,
7V(=Ay, A;) = (1 — 7)V(—A44, A). (4.16)

Suppose that when the borrowing reaches the given credit limit, i.e., ¥(T7) =
—A;, the lender randomizes between the renewal to A; = A; and refusal at A;. To
induce the randomization, when k(7T;) = —A;, the borrower should randomize so
that the lender is indifferent between the two strategies, i.e., the lender’s expected

payoff from the renewal equals to 0-which is the payoff from the refusal:



ﬂoP(—Al,zl) + (1 - ﬂo)P(—Al,Z) =0 (4.17)
where jig is the probability that the borrower consumes subject to A; and (1 — po)

is the one for A.
Also the lender initially commits to a mixed strategy at k(T1) = —A so

that the borrower is indifferent between consuming subject to A, and subject to

randomized credit limit of A; and A.

7l'1V(0, Al) = (1 - 1r1)[1roV(0, Zl) + (1 _ Wo)V(O, Z)] (418)
where 7, is the probability that the lender cuts off at A, and 7o is the probability

that he cuts off at A;.

The above strategy pdir is a' Nash equilibrium in mixed strategy in the subgame -

T®|A,.
 To support the strategy A} = 0 by subgame perfect equilibrium, we need to

show that the lender gets worse off by the deviation. If the borrower randomizes

at k(To) = 0 such that

1 P(0, A1) + (1 = i) [4oP (0, A1) + (1 — o) P(0, A) < 0 (4.19)
where y; is the probability to consume subject to A;, the lender gets smaller
expected return from deviation and (A4*, ¢*(t)) is a subgame perfect equilibrium.

However it is possible that there is no o satisfying equation (4.17) and equa-

tion(4.19) simultaneously, i.e., any po satisfying
poP(—A1, A1) + (1 — po)P(— A1, A) = 0, (4.20)
gives strictly positive expected return to the lender such that

p1P(0, A1) + (1 — 1) [oP(0, A1) + (1 — po) P(0, A)] > 0. (4.21)



because equation (4.20) does not necessarily imply that the term in the square
brackets in equation (4.21) is negative. If this term is positive, equation (4.21)
holds for any p; because P(0, A;) > 0. Therefore given the mixed strategy of the
borrower the lender gets better off by deviation. To prevent profitable deviation

by the lender in this case, the borrower randomizes at k(t) = A, so that
ﬂoP(—Al, ;1-1) + (1 - ﬂo)P(—Al,Z) Z 0, (4.22)

and

p#oP(0, A1) + (1 — po) P(0,4) < 0. (4.23)

This is identical to the deviation seen in step 2 above.
Any additional deviation in the subgame after the initial deviation belongs to
_one of the above three cases and can be handled accordingly. It completes the

proof of the theorem when P(0, A;) > 0.

Step 2: |

When P(0,4;) > 0, foi i > 2, without loss of generality we can assume that
P(0,7,) > 0.

Before we consider the play after a deviation, we provide a result which nar-
rows the range of deviations we have to examine. It can be easily shown that
if P(0,74;) < 0, then P(0,4;) < 0 for any A; > A;. Hence any deviation by
the lender such that A; > A; definitely makes the lender worse off because even
if the borrower consumes subject to A;, the creditor gets negative expected re-
turn. From the observé,tion we can confine ourselves to the deviation A, such
that P(0,A;) 2 0 and A, < A,. Furthermore, if it is a Nash equilibrium in the
subgame after the deviation that the lender renews up to A1, the lender definitely

gets worse off by the deviation. With these facts in mind, we can proceed as in

Step 1.



Case 1:
Consider a deviation A; € (A;, A;) such that P(0,4,) > 0. It suffices to show

that in the subgame I'}|A;, the lender renews the credit limit at least up to A;.

We can achieve this by letting the borrower randomize at k(t) = A; so that

uP(—A1,A) + (1 — p)P(—A1, A) > 0. (4.24)

Case 2:
If the lender deviates to A; = A,, he is indifferent to renewing the credit limit
up to A; and refusing at A, because P(—Zg,zl) = 0. Hence we apply the same

argument as Case 2 of Step 1 to show that from the equilibrium play the lender

gets worse off after the deviation.

Case 3:
Suppose that the lender deviates to A, € (0, Az). Let the lender cut off at A,

* so that A, plays the role of the credible credit limit. Then the case is identical to

Case 3 of Step 1 and we are done. ]

Proof of Proposition 4: If P(0,4,) > 0, consider the lender’s strategy A*
such that max{A%} = A < 4;. In the subgame T';|A;, where A} = A, we have
a subgame perfect equi]ibrium with no more borrowing by Proposition 3. Hence
we have the desired equilibrium.

i P(0,A;) > 0, consider the lender’s strategy A such that max{A;} = A
where P(0, A) > 0. Notice that in this case A may exceed A, but is less than A;. By
attaching a subgame perfect equilibrium with no more borrowing in the subgame

I | A%, we have a positive borrowing subgame perfect equilibrium. |



Figure 4.1: Lender’s Expected Return: Case 1
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Figure 4.2: Lender’s Expected Return: Case 2
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Figure 4.3: Alternative Credible Credit Limits
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